Counting Zeros over Finite Fields with Gröbner Bases

[1]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[2]  William A. Stein Can we create a viable free open source alternative to magma, maple, mathematica and matlab? , 2008, ISSAC '08.

[3]  Michael Brickenstein,et al.  POLYBORI: A Gröbner basis framework for Boolean polynomials , 2007 .

[4]  Marc Thurley,et al.  sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP , 2006, SAT.

[5]  Bart Selman,et al.  Model Counting: A New Strategy for Obtaining Good Bounds , 2006, AAAI.

[6]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[7]  Adnan Darwiche,et al.  New Advances in Compiling CNF into Decomposable Negation Normal Form , 2004, ECAI.

[8]  Toniann Pitassi,et al.  Combining Component Caching and Clause Learning for Effective Model Counting , 2004, SAT.

[9]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[10]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[11]  Adnan Darwiche,et al.  Decomposable negation normal form , 2001, JACM.

[12]  Roberto J. Bayardo,et al.  Counting Models Using Connected Components , 2000, AAAI/IAAI.

[13]  Robert Harley,et al.  Counting Points on Hyperelliptic Curves over Finite Fields , 2000, ANTS.

[14]  Ming-Deh A. Huang,et al.  An Algorithm for Approximate Counting of Points on Algebraic Sets over Finite Fields , 1998, ANTS.

[15]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[16]  Ming-Deh A. Huang,et al.  Solving systems of polynomial congruences modulo a large prime , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[17]  Ernst W. Mayr,et al.  Exponential space computation of Gröbner bases , 1996, ISSAC '96.

[18]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[19]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[20]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[21]  Ming-Deh A. Huang,et al.  Primality Testing and Abelian Varieties over Finite Fields , 1992 .

[22]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[23]  Marek Karpinski,et al.  An approximation algorithm for the number of zeros or arbitrary polynomials over GF(q) , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[24]  Marek Karpinski,et al.  Approximating the number of zeroes of a GF[2] polynomial , 1991, SODA '91.

[25]  Roger Germundsson Basic Results on Ideals and Varieties in Finite Fields , 1991 .

[26]  J. Pila Frobenius maps of Abelian varieties and finding roots of unity in finite fields , 1990 .

[27]  J. H. Lint,et al.  Introduction to coding theory and algebraic geometry , 1989 .

[28]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[29]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[30]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[31]  Bruno Buchberger,et al.  A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.

[32]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[33]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[34]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .