Temporal patterns of spatial genetic structure and effective population size in European plaice (Pleuronectes platessa) along the west coast of Scotland and in the Irish Sea

Watts, P. C., Kay, S. M., Wolfenden, D., Fox, C. J., Geffen, A. J., Kemp, S. J., and Nash, R. D. M. 2010. Temporal patterns of spatial genetic structure and effective population size in European plaice (Pleuronectes platessa) along the west coast of Scotland and in the Irish Sea. - ICES Journal of Marine Science, 67: 607-616.The European plaice (Pleuronectes platessa) is a relatively mobile flatfish species, and previous studies have reported broad-scale genetic homogeneity among samples distributed throughout much of its northern European range, with no evidence for isolation-by-distance (IBD) population structure. Using microsatellite loci, the pattern of spatial genetic structure and effective population size is characterized for >800 plaice collected from locations off the west coast of Great Britain over a 3-year period (2001-2003). The plaice populations are characterized by weak spatial genetic structure, consistent with tagging data, and relatively low effective population sizes. In contrast to previous work, a pattern of isolation by distance is present among pairs of plaice from within each sampling period. However, IBD spatial structure was not observed for comparisons of plaice from different sampling years or using the entire dataset, indicating a patchy temporal genetic structure. Therefore, pooling the data from several years can mask subtle patterns of population structure and potentially confound estimation of other important demographic parameters, such as effective population size.

[1]  O. Hardy,et al.  New insights from fine‐scale spatial genetic structure analyses in plant populations , 2004, Molecular ecology.

[2]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[3]  R. Waples,et al.  A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci* , 2006, Conservation Genetics.

[4]  Richard D.M. Nash,et al.  The importance of individual behaviour for successful settlement of juvenile plaice (Pleuronectes platessa L.) : a modelling and field study in the eastern Irish Sea , 2006 .

[5]  R. Waples,et al.  ldne: a program for estimating effective population size from data on linkage disequilibrium , 2008, Molecular ecology resources.

[6]  M. R. Dunn,et al.  The stock structure and migrations of plaice populations on the west coast of England and Wales , 2002 .

[7]  J. Graves,et al.  Genetic heterogeneity of Atlantic bluefin tuna caught in the eastern North Atlantic Ocean south of Iceland , 2006 .

[8]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[9]  Numerical simulations of tidally cued vertical migrations of flatfish larvae in the North Sea , 2004 .

[10]  J. Crow,et al.  Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Boutilier,et al.  ISOLATION BY DISTANCE IN THE ATLANTIC COD, GADUS MORHUA, AT LARGE AND SMALL GEOGRAPHIC SCALES , 2001, Evolution; international journal of organic evolution.

[12]  M. Meekan,et al.  Genetic identity determines risk of post-settlement mortality of a marine fish. , 2007, Ecology.

[13]  D. Bekkevold,et al.  Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.) , 2004 .

[14]  R. Nash Exploring the population dynamics of Irish Sea plaice, Pleuronectes platessa L., through the use of Paulik diagrams , 1998 .

[15]  S. Rogers,et al.  Dispersal patterns of the eggs and larvae of spring-spawning fish in the Irish Sea, UK , 2007 .

[16]  William G. Hill,et al.  Estimation of effective population size from data on linkage disequilibrium , 1981 .

[17]  V. Loeschcke,et al.  Spring-spawning herring (Clupea harengus L.) in the southwestern Baltic Sea: do they form genetically distinct spawning waves? , 2005 .

[18]  P. Bentzen,et al.  Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic , 1996 .

[19]  D. Olson,et al.  Seascape Genetics: A Coupled Oceanographic-Genetic Model Predicts Population Structure of Caribbean Corals , 2006, Current Biology.

[20]  R. Nash,et al.  Genetic structure of juvenile plaice Pleuronectes platessa on nursery grounds within the Irish Sea , 2004 .

[21]  K. Bailey,et al.  Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure , 2004, Molecular ecology.

[22]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.

[23]  D. Simberloff,et al.  Conservation Biology: An Evolutionary-Ecological Perspective , 1980 .

[24]  L. T. Kell,et al.  Implications for current management advice for North Sea plaice: Part I. Migration between the North Sea and English Channel , 2004 .

[25]  Laurence T. Kell,et al.  Lumpers or splitters? Evaluating recovery and management plans for metapopulations of herring , 2009 .

[26]  E. Garcia-Vazquez,et al.  Population structure of Merluccius merluccius along the Iberian Peninsula coast , 2005 .

[27]  C. Taggart,et al.  Genetic Differentiation, Temporal Stability, and the Absence of Isolation by Distance among Atlantic Herring Populations , 2004 .

[28]  L. Bernatchez,et al.  Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems , 2007, Molecular ecology.

[29]  G. Hoarau,et al.  New microsatellites primers for plaice, Pleuronectes platessa L. (Teleostei: Pleuronectidae) , 2002 .

[30]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[31]  J. Wares,et al.  Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, Estuarine-dependent marine fish (Sciaenops ocellatus). , 2002, Genetics.

[32]  John D. Reynolds,et al.  Migration route and spawning area fidelity by North Sea plaice , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  J. Metcalfe,et al.  Tracking fish with electronic tags , 1997, Nature.

[34]  F. Rousset,et al.  Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator , 2006, Molecular ecology.

[35]  L. Bernatchez,et al.  Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance , 2004, Molecular ecology.

[36]  R. Frankham Effective population size/adult population size ratios in wildlife: a review. , 1995, Genetical research.

[37]  Montgomery Slatkin,et al.  ISOLATION BY DISTANCE IN EQUILIBRIUM AND NON‐EQUILIBRIUM POPULATIONS , 1993, Evolution; international journal of organic evolution.

[38]  R. Nash,et al.  Birth-date selection in early life stages of plaice Pleuronectes platessa in the eastern Irish Sea (British Isles) , 2007 .

[39]  R. Stephenson,et al.  Genetically different Atlantic herring Clupea harengus spawning waves , 2003 .

[40]  D. J. Thompson,et al.  Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercuriale: Odonata). , 2007, The Journal of animal ecology.

[41]  F. Rousset Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. , 1997, Genetics.

[42]  R. Waples Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species , 1998 .

[43]  R. Nash,et al.  Potential transport of plaice eggs and larvae between two apparently self-contained populations in the Irish Sea , 2009 .

[44]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[45]  A. Rijnsdorp,et al.  Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large‐scale spatial and temporal homogeneity , 2002, Molecular ecology.

[46]  M. Ridout,et al.  LINKEM: A Program for Genetic Linkage Analysis , 1995 .

[47]  Gary R. Carvalho,et al.  Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  I. Hanski,et al.  Inbreeding and extinction in a butterfly metapopulation , 1998, Nature.

[49]  A. Rijnsdorp,et al.  Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.) , 2005, Proceedings of the Royal Society B: Biological Sciences.

[50]  D. Bekkevold,et al.  Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea , 2005, Molecular ecology.

[51]  G. Carvalho,et al.  Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses , 1999, Heredity.

[52]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[53]  M. Bagley,et al.  Use of Linkage Disequilibrium Data to Estimate Effective Size of Hatchery and Natural Fish Populations , 1992 .

[54]  P. Bentzen,et al.  Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation , 1998 .

[55]  A. Rijnsdorp,et al.  Temporal changes in allele frequencies but stable genetic diversity over the past 40 years in the Irish Sea population of thornback ray, Raja clavata , 2008, Heredity.

[56]  E. Trippel,et al.  Skewed sex ratios in spawning shoals of Atlantic cod (Gadus morhua) , 1996 .

[57]  Bette A. Loiselle,et al.  Spatial genetic structure of a tropical understory shrub, PSYCHOTRIA OFFICINALIS (RuBIACEAE) , 1995 .

[58]  P. Steingrund,et al.  Genetic divergence among East Icelandic and Faroese populations of Atlantic cod provides evidence for historical imprints at neutral and non-neutral markers , 2008 .

[59]  G. Carvalho,et al.  Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua) , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  D. Ruzzante,et al.  Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: Cohort contribution and genetic stability , 1996 .

[61]  S. V. Goddard,et al.  Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland : a test and evidence of temporal stability , 1997 .

[62]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[63]  Steven J. D. Martell,et al.  Fisheries Ecology and Management , 2004 .

[64]  G. Carvalho,et al.  Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites , 2001 .

[65]  R. Nash,et al.  Isolation and characterization of microsatellite loci in the European plaice, Pleuronectes platessa L. (Teleostei: Pleuronectidae) , 1999, Molecular ecology.

[66]  O. Hardy,et al.  spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels , 2002 .

[67]  J. Hemmer-Hansen,et al.  Landscape genetics goes to sea , 2007, Journal of biology.

[68]  J. Metcalfe,et al.  Impacts of migratory behaviour on population structure in North Sea plaice , 2004 .

[69]  E. Simmonds,et al.  North Sea herring population structure revealed by microsatellite analysis , 2005 .

[70]  J. Metcalfe,et al.  Seasonal migrations of plaice (Pleuronectes platessa) through the Dover Strait , 1996 .

[71]  N. Stenseth,et al.  Fine‐scaled geographical population structuring in a highly mobile marine species: the Atlantic cod , 2003, Molecular ecology.