Thermal-aware Adaptive Energy Minimization of OpenMP Parallel Applications

Energy minimization of parallel applications considering thermal distributions among the processor cores is an emerging challenge for current and future generations of many-core computing systems. This paper proposes an adaptive energy minimization approach that hierarchically applies dynamic voltage\slash frequency scaling (DVFS), thread-to-core affinity and dynamic concurrency controls (DCT) to address this challenge. The aim is to minimize the energy consumption and achieve balanced thermal distributions among cores, thereby improving the lifetime reliability of the system, while meeting a specified power budget requirement. Fundamental to this approach is an iterative learning-based control algorithm that adapts the VFS and core allocations dynamically based on the CPU workloads and thermal distributions of the processor cores, guided by the CPU performance counters at regular intervals. The adaptation is facilitated through modified OpenMP library-based power budget annotations. The proposed approach is extensively validated on an Intel Xeon E5-2630 platform with up to 12 CPUs running NAS parallel benchmark applications.

[1]  Mateo Valero,et al.  Understanding the future of energy-performance trade-off via DVFS in HPC environments , 2012, J. Parallel Distributed Comput..

[2]  Yu Cao,et al.  Workload-Aware Neuromorphic Design of the Power Controller , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[3]  Gerhard Wellein,et al.  LIKWID: A Lightweight Performance-Oriented Tool Suite for x86 Multicore Environments , 2010, 2010 39th International Conference on Parallel Processing Workshops.

[4]  Gerhard Wellein,et al.  LIKWID: Lightweight Performance Tools , 2011, CHPC.

[5]  Ki-Seok Chung,et al.  Dynamic Power Management Technique for Multicore Based Embedded Mobile Devices , 2013, IEEE Transactions on Industrial Informatics.

[6]  Bharadwaj Veeravalli,et al.  Reinforcement learning-based inter- and intra-application thermal optimization for lifetime improvement of multicore systems , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[7]  Sherief Reda,et al.  Pack & Cap: Adaptive DVFS and thread packing under power caps , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[8]  Pradip Bose,et al.  The case for lifetime reliability-aware microprocessors , 2004, Proceedings. 31st Annual International Symposium on Computer Architecture, 2004..

[9]  Stephen L. Olivier,et al.  Power Measurement and Concurrency Throttling for Energy Reduction in OpenMP Programs , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[10]  Bronis R. de Supinski,et al.  Prediction models for multi-dimensional power-performance optimization on many cores , 2008, 2008 International Conference on Parallel Architectures and Compilation Techniques (PACT).