A fluorescent sensor array for saccharides based on boronic Acid appended bipyridinium salts.

Weareabletodiscriminateamongtwelve saccharides at a concentration of 2mm by using afluorescentsensorarrayatphysiologicalpHvalues.Themodularsensingensembleiscomposedoftheanionicfluorescentdye,8-hydroxypyrene-1,3,6-trisulfonicacidtriso-diumsalt(HPTS),andanarrayofsixcationicbis-boronicacidappendedbenzylviologens(BBVs,Scheme1).Wereportedthatsyntheticallyvaryingthespacingbetweenthediboronicacidsprovidedenhancedglucoseselectivity.

[1]  Eric V Anslyn,et al.  Differential receptor arrays and assays for solution-based molecular recognition. , 2006, Chemical Society reviews.

[2]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[3]  Eric V Anslyn,et al.  Threshold detection using indicator-displacement assays: an application in the analysis of malate in Pinot Noir grapes. , 2004, Journal of the American Chemical Society.

[4]  Eric V Anslyn,et al.  Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. , 2001, Angewandte Chemie.

[5]  F. C. Schryver,et al.  Fluorescence quenching in micelles in the presence of a probe-quencher ground-state charge-transfer complex , 1993 .

[6]  J. McDevitt,et al.  Differential receptors create patterns diagnostic for ATP and GTP. , 2003, Journal of the American Chemical Society.

[7]  M. Olmstead,et al.  The effect of boronic acid-positioning in an optical glucose-sensing ensemble , 2006 .

[8]  K. Severin,et al.  Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides. , 2006, Chemistry.

[9]  T. Bell,et al.  Supramolecular optical chemosensors for organic analytes. , 2004, Chemical Society reviews.

[10]  J. C. Norrild,et al.  A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-D-glucofuranose. A reinvestigation , 1999 .

[11]  E. Anslyn Supramolecular analytical chemistry. , 2007, The Journal of organic chemistry.

[12]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[13]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[14]  J. Frederiksen,et al.  A New Glucose-Selective Fluorescent Bisboronic Acid. First Report of Strong α-Furanose Complexation in Aqueous Solution at Physiological pH1 , 1999 .

[15]  H. Harmon,et al.  Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  Soya Gamsey,et al.  Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and alpha-hydroxycarboxylates. , 2007, Journal of the American Chemical Society.

[17]  S. Shinkai,et al.  Artificial Receptors as Chemosensors for Carbohydrates , 2002 .

[18]  E. Anslyn,et al.  Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response. , 2006, Journal of the American Chemical Society.

[19]  Kay Severin,et al.  Dynamic combinatorial libraries of dye complexes as sensors. , 2005, Angewandte Chemie.

[20]  Kay Severin,et al.  A chemosensor array for the colorimetric identification of 20 natural amino acids. , 2005, Journal of the American Chemical Society.

[21]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[22]  J. C. Norrild,et al.  Evidence for Mono- and Bisdentate Boronate Complexes of Glucose in the Furanose Form. Application of 1JC-C Coupling Constants as a Structural Probe , 1995 .

[23]  Eric V. Anslyn,et al.  Indicator-displacement assays , 2006 .

[24]  Mark J. Olah,et al.  A rational approach to minimal high-resolution cross-reactive arrays. , 2006, Journal of the American Chemical Society.

[25]  Kei M. Igarashi,et al.  Maps of odorant molecular features in the Mammalian olfactory bulb. , 2006, Physiological reviews.

[26]  John T McDevitt,et al.  A differential array of metalated synthetic receptors for the analysis of tripeptide mixtures. , 2005, Journal of the American Chemical Society.

[27]  Hiroshi Tsukube,et al.  Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. , 2002, Chemical reviews.

[28]  John J. Lavigne,et al.  Aufspüren eines Paradigmenwechsels auf dem Gebiet der molekularen Erkennung: von den selektiven Rezeptoren zu den differenziellen Rezeptoren , 2001 .

[29]  A. Hamilton,et al.  Pattern recognition of proteins based on an array of functionalized porphyrins. , 2006, Journal of the American Chemical Society.

[30]  I. Hamachi,et al.  A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. , 2006, Journal of the American Chemical Society.

[31]  D. Cordes,et al.  Monosaccharide Detection with 4,7-Phenanthrolinium Salts: Charge-Induced Fluorescence Sensing , 2003 .

[32]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[33]  R. Bentley The nose as a stereochemist. Enantiomers and odor. , 2006, Chemical reviews.

[34]  Jae Wook Lee,et al.  Colorimetric identification of carbohydrates by a pH indicator/pH change inducer ensemble. , 2006, Angewandte Chemie.

[35]  D. Cordes,et al.  The interaction of boronic acid-substituted viologens with pyranine: the effects of quencher charge on fluorescence quenching and glucose response. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  Praveen Thoniyot,et al.  Optical glucose detection across the visible spectrum using anionic fluorescent dyes and a viologen quencher in a two-component saccharide sensing system. , 2005, Organic & biomolecular chemistry.