Geometric Filters, Diffusion Flows, and Kernels in Image Processing
暂无分享,去创建一个
Ron Kimmel | Nir Sochen | Alon Spira | R. Kimmel | A. Spira | N. Sochen
[1] E. Schrödinger. Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .
[2] Ron Kimmel. Affine differential signatures for gray level images of planar shapes , 1996, Proceedings of 13th International Conference on Pattern Recognition.
[3] Ron Kimmel,et al. Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.
[4] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[5] R. Kimmel,et al. An efficient solution to the eikonal equation on parametric manifolds , 2004 .
[6] Atsushi Imiya,et al. Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.
[7] Guillermo Sapiro,et al. Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..
[8] L. Álvarez,et al. Signal and image restoration using shock filters and anisotropic diffusion , 1994 .
[9] Ron Kimmel,et al. Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..
[10] Michael Elad,et al. On the bilateral filter and ways to improve it , 2002 .
[11] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[12] J. J. Vos,et al. An analytical description of the line element in the zone-fluctuation model of colour vision. II. The derivation of the line element. , 1972, Vision Research.
[13] J A Sethian,et al. Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[14] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[15] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[16] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[17] D. Gabor. INFORMATION THEORY IN ELECTRON MICROSCOPY. , 1965, Laboratory investigation; a journal of technical methods and pathology.
[18] Carlo Tomasi,et al. Perceptual metrics for image database navigation , 1999 .
[19] Max A. Viergever,et al. Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..
[20] W. Stiles. A modified Helmholtz line-element in brightness-colour space , 1946 .
[21] Ron Kimmel,et al. Image Processing via the Beltrami Operator , 1998, ACCV.
[22] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[23] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[24] Roberto Manduchi,et al. Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[25] Michael Elad,et al. On the origin of the bilateral filter and ways to improve it , 2002, IEEE Trans. Image Process..
[26] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..
[27] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[28] Ron Kimmel,et al. Efficient Beltrami Flow Using a Short Time Kernel , 2003, Scale-Space.
[29] Ron Kimmel,et al. A general framework for low level vision , 1998, IEEE Trans. Image Process..
[30] D. Tschumperlé. PDE's based regularization of multivalued images and applications , 2002 .
[31] Ron Kimmel,et al. Numerical geometry of images - theory, algorithms, and applications , 2003 .
[32] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[33] Tai Sing Lee,et al. Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[34] Yehoshua Y. Zeevi,et al. Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[35] Joachim Weickert,et al. Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.
[36] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[37] Alfred M. Bruckstein,et al. On Gabor's contribution to image enhancement , 1994, Pattern Recognit..
[38] Silvano Di Zenzo,et al. A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..
[39] Alfred M. Bruckstein,et al. Diffusions and Confusions in Signal and Image Processing , 2001, Journal of Mathematical Imaging and Vision.
[40] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[41] Ron Kimmel. Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..
[42] V. Caselles,et al. The Tree of Shapes of an Image , 2003 .