Analysis of an approximate cloaking for acoustic scattering problems in R3

Abstract In this paper, we consider the acoustic cloaking based on singular transformations and its approximation in the context of scattering problems in R 3 . The cloaking based on singular transformations can not avoid a singularity of the resulting Laplace–Beltrami operator because singular transformations blow up one point to a sphere. In order to treat the singularity properly, we use the variational method proposed in Greenleaf et al. (2007) [1] and prove the possibility of the perfect cloaking. To design an approximation scheme that avoids the singularity of the perfect cloaking, we regularize the singular transformation and show that transmitted fields into the cloaked region in H 1 -norm and scattered fields on any compact set outside of the cloaked region in L ∞ -norm converge to zero as a regularization (approximation) parameter approaches zero provided that wave number is not a Neumann eigenvalue of the Helmholtz equation in the cloaked region.

[1]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[2]  Daniel Torrent,et al.  Acoustic cloaking in two dimensions: a feasible approach , 2008 .

[3]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[4]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[5]  Hoai-Minh Nguyen,et al.  Cloaking via change of variables for the Helmholtz equation in the whole space , 2010 .

[6]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[7]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[8]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[9]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[10]  G. Arfken Mathematical Methods for Physicists , 1967 .

[11]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[12]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[13]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[15]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[16]  Matti Lassas,et al.  Invisibility and Inverse Problems , 2008, 0810.0263.

[17]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[18]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[19]  Clair Poignard,et al.  Asymptotically precise norm estimates of scattering from a small circular inhomogeneity , 2007 .

[20]  G. Uhlmann,et al.  Isotropic transformation optics: approximate acoustic and quantum cloaking , 2008, 0806.0085.

[21]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .

[22]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .