Noble Gases: Inorganic Chemistry

The noble gas (Ng) elements have a rich reaction chemistry despite having a filled valence shell that would indicate otherwise. Halide compounds, usually with fluorine, and various oxides are common. There is also a growing class of carbon and nitrogen derivatives. A wide range of neutral and cationic noble gas compounds can be formed as long as the added elements, or combinations of elements, possess sufficient electron affinity. The range of compounds, along with characterization data and brief bonding descriptions will be presented for each element. Many of the compounds serve as starting materials for other derivatives, including the rapidly growing field of noble gas containing transition metal complexes. For example, there is now a broad range of salts containing transition metals. The article will conclude with a brief overview of the many unusual and disparate applications being found for these elements. Keywords: helium; neon; argon; krypton; radon; oxide; fluoride; salt

[1]  Scott Yockel,et al.  An ab initio study of the noble gas compound HKrCl , 2004 .

[2]  P. Hazendonk,et al.  NMR spectroscopic study of xenon fluorides in the gas phase and of XeF2 in the solid state , 2004 .

[3]  A. Sekiya,et al.  Reaction of carbonyl compounds with xenon difluoride in the presence of silicon tetrafluoride , 2004 .

[4]  R. Suontamo,et al.  The syntheses of carbocations by use of the noble-gas oxidant, [XeOTeF5][Sb(OTeF5)6]: the syntheses and characterization of the CX3+ (X = Cl, Br, OTeF5) and CBr(OTeF5)2+ cations and theoretical studies of CX3+ and BX3 (X = F, Cl, Br, I, OTeF5). , 2004, Journal of the American Chemical Society.

[5]  Wei-Ping Hu,et al.  Strong hydrogen bonding between neutral noble-gas molecules (HNgF, Ng=Ar, Kr, and Xe) and hydrogen fluoride: a theoretical study , 2004 .

[6]  M. Gerry,et al.  Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. , 2004, Journal of the American Chemical Society.

[7]  Jun Yu Li,et al.  On the noble-gas-induced intersystem crossing for the CUO molecule: experimental and theoretical investigations of CUO(Ng)n (Ng = Ar, Kr, Xe; n = 1, 2, 3, 4) complexes in solid neon. , 2004, Inorganic chemistry.

[8]  F. Grandinetti,et al.  Beryllium–helium cations: computational evidence for a large class of thermodynamically stable species , 2003 .

[9]  P. Wenthold,et al.  Bond dissociation energy and Lewis acidity of the xenon fluoride cation. , 2003, Inorganic chemistry.

[10]  C. Deakyne,et al.  Noble gas compounds and chemistry: a brief review of interrelations and interactions with fluorine-containing species , 2003 .

[11]  V. Tsirelson,et al.  The features of the electron density in XeF5XF6 (X=P, As, Sb, Bi, V, Nb, Ta) molecules , 2003 .

[12]  W. Kox,et al.  Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. , 2003, Life sciences.

[13]  M. Klobukowski,et al.  Transition metal–noble gas bonding: the next frontier , 2003 .

[14]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[15]  U. Beyerle,et al.  Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios , 2003 .

[16]  J. Lehmann The chemistry of krypton , 2002 .

[17]  D. A. Humphreys,et al.  Disruption mitigation with high-pressure noble gas injection , 2002 .

[18]  A. Cunje,et al.  Bonding of Rare-Gas Atoms to Si in Reactions of Rare Gases with SiF3 + , 2001 .

[19]  V. Bardin,et al.  Preparation and Reactivity of Compounds Containing a Carbon−Xenon Bond , 2001 .

[20]  N. Zefirov,et al.  Chemistry of xenon derivatives. Synthesis and chemical properties , 2001 .

[21]  F. Paruk,et al.  Untoward effects of rapid-acting antihypertensive agents. , 2001, Best practice & research. Clinical obstetrics & gynaecology.

[22]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[23]  R. Hagiwara,et al.  Chemical stability and electrochemical activity of xenon difluoride in propylene carbonate , 2000 .

[24]  M. Pettersson,et al.  Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices , 2000 .

[25]  S. Seidel,et al.  Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4 , 2000 .

[26]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[27]  M. W. George,et al.  An Investigation into the Reactivity of Organometallic Noble Gas Complexes: A Time-Resolved Infrared Study in Supercritical Noble Gas and Alkane Solution at Room Temperature , 2000 .

[28]  M. Gerken The impact of multi-NMR spectroscopy on the development of noble-gas chemistry , 2000 .

[29]  M. Pettersson,et al.  New Rare-Gas-Containing Neutral Molecules , 1999 .

[30]  P. Mayhew,et al.  The fluorination of uranium and zirconium oxides with xenon difluoride initiated by the addition of water , 1998 .

[31]  R. Wieler,et al.  Uranium-xenon chronology: precise determination of λsƒ ∗136Ysƒ for spontaneous fission of 238U , 1994 .

[32]  J. Jokisaari NMR of noble gases dissolved in isotropic and anisotropic liquids , 1994 .

[33]  H. Frohn,et al.  Pentafluorophenylxenon(II) pentafluorobenzoate : the first preparative synthesis and structural characterization of an acyloxy compound of xenon(II) , 1993 .

[34]  R. Gillespie The VSEPR model revisited , 1992 .

[35]  T. M. Duncan,et al.  NMR Spectroscopy of Xenon in Confined Spaces: Clathrates, Intercalates, and Zeolites , 1991 .

[36]  A. Jesih,et al.  Crystal structures of XeF sub 5 sup + MF sub 4 sup minus (M = Ag, Au) and their relevance to the basicity and oxidizability of MF sub 4 sup minus , 1989 .

[37]  Hermann Josef Frohn,et al.  The pentafluorophenylxenon(II) cation: [C6F5Xe]+; the first stable system with a xenon–carbon bond , 1989 .

[38]  G. Schrobilgen,et al.  Krypton bis[pentafluoro-oxotellurate(VI)], Kr(OTeF5)2, the first example of a Kr–O bond , 1989 .

[39]  A. Jesih,et al.  KrF2/MnF4 adducts from KrF2/MnF2 interaction in HF as a route to high purity MnF4 , 1988 .

[40]  G. Schrobilgen,et al.  The fluoro(perfluoropyridine)xenon(II) cations, C5F5N–XeF+ and 4-CF3C5F4N–XeF+; novel examples of xenon as an aromatic substituent and of xenon–nitrogen bonding , 1988 .

[41]  G. Schrobilgen The fluoro(perfluoroalkylnitrile)noble-gas(II) cations, RFCN–NgF+(Ng = Kr or Xe; RF= CF3, C2F5, n-C3F7), and the fluoro(trifluoro-s-triazine)xenon(II) cation, s-C3F3N2N–XeF+; novel noble gas–nitrogen bonds , 1988 .

[42]  G. Schrobilgen,et al.  Fluoro(nitrile)xenon(II) cations, RC≡N-XeF+ AsF6− (R=H, CH3, CH2F, C2H5, C2F5, C3F7, or C6F5); Novel examples of xenon-nitrogen bonds and 129Xe-13C, 129Xe-1H, and 129Xe-14N nuclear spin-spin couplings , 1987 .

[43]  C. Jameson The Noble Gases , 1987 .

[44]  L. Stein The Chemistry of Radon , 1983 .

[45]  J. Huston Chemical and physical properties of some xenon compounds , 1982 .

[46]  D. Desmarteau,et al.  Xenon-nitrogen bonds. The synthesis and characterization of [imidobis(sulfuryl fluoride)]xenon(II) derivatives Xe[N(SO2F)2]2, FXeN(SO2F)2 and [(FSO2)2NXe]2F+AsF6- and the radical .cntdot.N(SO2F)2 , 1981 .

[47]  J. Holloway,et al.  Fluorine-19 and xenon-129 NMR studies of the XeF2.cntdot.nWOF4 and XeF2.cntdot.nMoOF4 (n = 1-4) adducts: examples of nonlabile xenon-fluorine-metal bridges in solution , 1980 .

[48]  G. Schrobilgen,et al.  XeOF5– and [(XeOF4)3F]– anions , 1980 .

[49]  N. Bartlett,et al.  Tautomerism in Xenon Hexafluoride: An Investigation of Xenon Hexafluoride and its Complexes by Raman Spectroscopy† , 1978 .

[50]  R. Gillespie,et al.  Preparation and Raman spectra of XeOF2, XeOF3–, and XeO2F3– , 1977 .

[51]  R. Gillespie,et al.  Raman spectral studies of .alpha.- and .beta.-trifluoroxenon hexafluoroantimonates, trifluoroxenon(1+) undecafluorodiantimonate(1-), trifluoroxenon(1+) hexafluoroarsenate(1-), trifluorooxoxenon(1+) hexafluoroantimonate(1-) and undecafluorodiantimonate(1-), and fluorodioxoxenon(1+) undecafluorodianti , 1976 .

[52]  N. Bartlett,et al.  Redox reactions in the XeF2/platinum fluoride and XeF2/palladium fluoride systems and the conversion of XeF2 to XeF4 and Xe , 1976 .

[53]  N. Bartlett,et al.  Preparation and Raman spectra of the salts [XeF3+][SbF6-], [XeF3+][Sb2F11-], [XeOF3+][SbF6-] and [XeOF3+][Sb2F11-] , 1973 .

[54]  J. Huston Xenon dioxide tetrafluoride , 1971 .

[55]  N. Bartlett,et al.  The Xenon Difluoride Complexes XeF2 · XeOF4; XeF2 · XeF6 · AsF5 and XeF2 · 2 XeF6 · 2 AsF5 and Their Relevance to Bond Polarity and Fluoride Ion Donor Ability of XeF2 and XeF6 , 1971 .

[56]  J. Holloway,et al.  Photoionization mass spectrometric study of xenon difluoride, xenon tetrafluoride, and xenon hexafluoride , 1971 .

[57]  R. D. Burbank,et al.  Xenon Hexafluoride: Structure of a Cubic Phase at -80�C , 1970, Science.

[58]  D. W. Osborne,et al.  Heat Capacity and Other Thermodynamic Functions of Xenon Hexafluoride from 5 to 350°K , 1969 .

[59]  N. Bartlett,et al.  The relative fluoride ion donor abilities of XeF2, XeF4, and XeF6 and a chemical purification of XeF4 , 1968 .

[60]  J. Huston Xenon trioxide difluoride: Mass spectrum , 1968 .

[61]  J. Huston Xenon dioxide difluoride: isolation and some properties , 1967 .

[62]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[63]  E. E. Weaver,et al.  The Xenon-Fluorine System , 1966 .

[64]  J. Malm,et al.  Hydrolysis of Xenon Hexafluoride and the Aqueous Solution Chemistry of Xenon , 1964 .

[65]  Howard H. Claassen,et al.  Xenon Tetroxide: Preparation and Some Properties , 1964, Science.

[66]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[67]  R. Hoppe,et al.  Fluorination of Xenon , 1962 .

[68]  G. Pimentel The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method , 1951 .

[69]  D. Yost,et al.  AN ATTEMPT TO PREPARE A CHLORIDE OR FLUORIDE OF XENON , 1933 .

[70]  L. Rayleigh,et al.  Argon, a new constituent of the atmosphere , 1895, American Journal of Science.