Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements

In medical image analysis and high level computer vision, there is an intensive use of geometric features like orientations, lines, and geometric transformations ranging from simple ones (orientations, lines, rigid body or affine transformations, etc.) to very complex ones like curves, surfaces, or general diffeomorphic transformations. The measurement of such geometric primitives is generally noisy in real applications and we need to use statistics either to reduce the uncertainty (estimation), to compare observations, or to test hypotheses. Unfortunately, even simple geometric primitives often belong to manifolds that are not vector spaces. In previous works [1, 2], we investigated invariance requirements to build some statistical tools on transformation groups and homogeneous manifolds that avoids paradoxes. In this paper, we consider finite dimensional manifolds with a Riemannian metric as the basic structure. Based on this metric, we develop the notions of mean value and covariance matrix of a random element, normal law, Mahalanobis distance and χ2 law. We provide a new proof of the characterization of Riemannian centers of mass and an original gradient descent algorithm to efficiently compute them. The notion of Normal law we propose is based on the maximization of the entropy knowing the mean and covariance of the distribution. The resulting family of pdfs spans the whole range from uniform (on compact manifolds) to the point mass distribution. Moreover, we were able to provide tractable approximations (with their limits) for small variances which show that we can effectively implement and work with these definitions.

[1]  F. e. Calcul des Probabilités , 1889, Nature.

[2]  I. Holopainen Riemannian Geometry , 1927, Nature.

[3]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[4]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[5]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[6]  J. Ord,et al.  Characterization Problems in Mathematical Statistics , 1975 .

[7]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[8]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[9]  W. Klingenberg Riemannian Geometry , 1982 .

[10]  W. Herer Espérance mathématique au sens de Doss d'une variable aléatoire à valeurs dans un espace métrique , 1986 .

[11]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[12]  W. Herer Espérance mathématique d'une variable aléatoire à valeurs dans un espace métrique à courbure négative , 1988 .

[13]  Peter E. Jupp,et al.  A Unified View of the Theory of Directional Statistics, 1975-1988 , 1989 .

[14]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[15]  Annick M. Leroy,et al.  Robust Regression and Outlier Detection. , 1989 .

[16]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[17]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[18]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[19]  M. Émery,et al.  Sur le barycentre d'une probabilité dans une variété , 1991 .

[20]  W. Kendall Convexity and the Hemisphere , 1991 .

[21]  K. Mardia,et al.  Theoretical and Distributional Aspects of Shape Analysis , 1991 .

[22]  W. Kendall The Propeller: A Counterexample to a Conjectured Criterion for the Existence of Certain Convex Functions , 1992 .

[23]  J. M. Oller On an intrinsic analysis of statistical estimation , 1993 .

[24]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .

[25]  Marc Arnaudon Espérances conditionnelles et C-martingales dans les variétés , 1994 .

[26]  J. Picard Barycentres et martingales sur une variété , 1994 .

[27]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[28]  Marc Arnaudon Barycentres convexes et approximations des martingales continues dans les variétés , 1995 .

[29]  C. Small The statistical theory of shape , 1996 .

[30]  Xavier Pennec L'incertitude dans les problèmes de reconnaissance et de recalage - Applications en imagerie médicale et biologie moléculaire , 1996 .

[31]  R. Darling Martingales on noncompact manifolds : maximal inequalities and prescribed limits , 1996 .

[32]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[33]  X. Pennec Computing the Mean of Geometric Features Application to the Mean Rotation , 1998 .

[34]  Xavier Pennec,et al.  Feature-Based Registration of Medical Images: Estimation and Validation of the Pose Accuracy , 1998, MICCAI.

[35]  X. Pennec Toward a generic framework for recognition based on uncertain geometric features , 1998 .

[36]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  K. Mardia Directional statistics and shape analysis , 1999 .

[38]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[39]  N. Ayache,et al.  Landmark-based registration using features identified through differential geometry , 2000 .

[40]  Nicholas Ayache,et al.  Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information , 2001, IEEE Transactions on Medical Imaging.

[41]  Xavier Pennec,et al.  Rigid Point-Surface Registration Using an EM Variant of ICP for Computer Guided Oral Implantology , 2001, MICCAI.

[42]  R. Bhattacharya,et al.  Nonparametic estimation of location and dispersion on Riemannian manifolds , 2002 .

[43]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[44]  S. Granger,et al.  Statistiques exactes et approchées sur les normales aléatoires , 2002 .

[45]  Maher Moakher,et al.  Means and Averaging in the Group of Rotations , 2002, SIAM J. Matrix Anal. Appl..

[46]  Luc Soler,et al.  Evaluation of a New 3D/2D Registration Criterion for Liver Radio-Frequencies Guided by Augmented Reality , 2003, IS4TH.

[47]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[48]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[49]  Xavier Pennec,et al.  A Framework for Uncertainty and Validation of 3-D Registration Methods Based on Points and Frames , 2004, International Journal of Computer Vision.

[50]  Claus Gramkow,et al.  On Averaging Rotations , 2004, Journal of Mathematical Imaging and Vision.

[51]  Nicholas Ayache,et al.  Uniform Distribution, Distance and Expectation Problems for Geometric Features Processing , 1998, Journal of Mathematical Imaging and Vision.

[52]  B. Ripley,et al.  Robust Statistics , 2018, Wiley Series in Probability and Statistics.

[53]  O. Faugeras,et al.  Statistics on Multivariate Normal Distributions: A Geometric Approach and its Application to Diffusion Tensor MRI , 2004 .

[54]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[55]  X. Pennec Probabilities and Statistics on Riemannian Manifolds : A Geometric approach , 2004 .

[56]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[57]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[58]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[59]  Paul M. Thompson,et al.  Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability , 2005, IPMI.

[60]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[61]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.