Giant paramagnetic Meissner effect in multiband

Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.

[1]  E. Babaev,et al.  Vortex chains due to nonpairwise interactions and field-induced phase transitions between states with different broken symmetry in superconductors with competing order parameters , 2014, 1411.6656.

[2]  W. Kwok,et al.  Rayleigh instability of confined vortex droplets in critical superconductors , 2014, Nature Physics.

[3]  F. Peeters,et al.  Critical superconductors , 2013, 1311.5624.

[4]  F. Peeters,et al.  Soft vortex matter in a type-I/type-II superconducting bilayer , 2013, 1308.5555.

[5]  Miles A. Engbarth,et al.  Magnetization measurements and Ginzburg-Landau simulations of micron-size β-tin samples: evidence for an unusual critical behavior of mesoscopic type-I superconductors. , 2012, Physical Review Letters.

[6]  F. Peeters,et al.  Extended Ginzburg-Landau formalism : Systematic expansion in small deviation from the critical temperature , 2011, 1110.4772.

[7]  E. Babaev,et al.  Microscopic Derivation of Two-Component Ginzburg-Landau Model and Conditions of its Applicability in Two-Band Systems , 2011, 1110.1593.

[8]  D. Podolsky,et al.  Shallow pockets and very strong coupling superconductivity in FeSexTe1−x , 2011, Nature Physics.

[9]  G. A. Farias,et al.  Conditions for nonmonotonic vortex interaction in two-band superconductors , 2011, 1105.2403.

[10]  E. Babaev,et al.  Microscopic theory of type-1.5 superconductivity in multiband systems , 2011, 1102.5734.

[11]  J. Schmalian,et al.  Ginzburg-Landau theory of two-band superconductors: Absence of type-1.5 superconductivity , 2011 .

[12]  E. Babaev,et al.  Semi-Meissner state and nonpairwise intervortex interactions in type-1.5 superconductors , 2011, 1101.4599.

[13]  F. Peeters,et al.  Extended Ginzburg-Landau formalism for two-band superconductors. , 2011, Physical review letters.

[14]  M. P. Das,et al.  Attractive Vortex Interaction and the Intermediate-Mixed State of Superconductors , 2010, 1007.1107.

[15]  R. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[16]  M. Milovsevi'c,et al.  The Ginzburg-Landau theory in application , 2010, 1006.1771.

[17]  G. A. Farias,et al.  Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory , 2010, 1005.4630.

[18]  V. Moshchalkov,et al.  Type-1.5 superconductivity. , 2009, Physical review letters.

[19]  J. Aguiar,et al.  Flux trapping and paramagnetic effects in superconducting thin films: The role of de Gennes boundary conditions , 2008 .

[20]  E. Babaev,et al.  Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent systems , 2004, cond-mat/0411681.

[21]  M. Zhitomirsky,et al.  Ginzburg-Landau theory of vortices in a multigap superconductor , 2003, cond-mat/0309372.

[22]  George W. Crabtree,et al.  Magnesium Diboride: Better Late than Never , 2003 .

[23]  K. Machida,et al.  Thermodynamics and magnetic field profiles in low-κ type-II superconductors , 2002, cond-mat/0209660.

[24]  C. Adams,et al.  A Fast Semi-Implicit Finite-Difference Method for the TDGL Equations , 2001, cond-mat/0106466.

[25]  J. Aguiar,et al.  Flux penetration, matching effect, and hysteresis in homogeneous superconducting films , 2001 .

[26]  I. Luk’yanchuk Theory of superconductors withκclose to1/2 , 2000, cond-mat/0009030.

[27]  A. Geim,et al.  Paramagnetic Meissner effect in small superconductors , 1998, Nature.

[28]  Larkin,et al.  Paramagnetic moment in field-cooled superconducting plates: Paramagnetic Meissner effect. , 1995, Physical review. B, Condensed matter.

[29]  Chen,et al.  Observation of paramagnetic Meissner effect in niobium disks. , 1995, Physical review letters.

[30]  T. M. Rice,et al.  Unusual paramagnetic phenomena in granular high-temperature superconductors-A consequence of d- wave pairing? , 1995 .

[31]  D. Thompson,et al.  Paramagnetic Meissner effect in a niobium disk , 1994 .

[32]  A. Hernando,et al.  Paramagnetic Meissner Effect and 0-π Josephson Junctions , 1994 .

[33]  Domínguez,et al.  Phenomenological theory of the paramagnetic Meissner effect. , 1994, Physical review letters.

[34]  D. Khomskii Wohlleben Effect (Paramagnetic Meissner Effect) in High-Temperature superconductors , 1994 .

[35]  Bock,et al.  Paramagnetic Meissner effect in high-temperature superconductors. , 1993, Physical review. B, Condensed matter.

[36]  Ziemann,et al.  Paramagnetic Meissner effect analyzed by second harmonics of the magnetic susceptibility: Consistency with a ground state carrying spontaneous currents. , 1993, Physical review. B, Condensed matter.

[37]  J. Bock,et al.  Influence of granularity on the critical current density in melt-cast processed Bi2Sr2CaCu2Ox , 1993 .

[38]  Nikolić,et al.  Positive field-cooled susceptibility in high-Tc superconductors. , 1993, Physical review. B, Condensed matter.

[39]  T. M. Rice,et al.  Paramagnetic Effect in High T c Superconductors -A Hint for d-Wave Superconductivity , 1992 .

[40]  Kusmartsev Destruction of the Meissner effect in granular high-temperature superconductors. , 1992, Physical review letters.

[41]  Kock,et al.  Paramagnetic Meissner effect in Bi high-temperature superconductors. , 1992, Physical review letters.

[42]  P. Nordblad,et al.  Anti-Meissner effect in the BiSrCaCuO-system , 1989 .

[43]  A. Hubert Attractive Interactions between Flux Lines as Derived from a Generalized Neumann‐Tewordt Functional , 1972 .

[44]  U. Essmann Observation of the mixed state , 1971 .

[45]  F. Rothwarf,et al.  INTERMEDIATE MIXED STATE OF TYPE-II SUPERCONDUCTORS. , 1971 .

[46]  A. Jacobs FIRST-ORDER TRANSITIONS AT H/sub c1/ AND H/sub c2/ IN TYPE II SUPERCONDUCTORS. , 1971 .

[47]  U. Kraegeloh Flux line lattices in the intermediate state of superconductors with Ginzburg Landau parameters near 12 , 1969 .

[48]  J. Matricon,et al.  Superheating fields in superconductors , 1967 .

[49]  V. Moshchalkov,et al.  PARAMAGNETIC MEISSNER EFFECT FROM THE SELF-CONSISTENT SOLUTION OF THE GINZBURG-LANDAU EQUATIONS , 1997 .

[50]  Williams,et al.  Paramagnetic Meissner effect in Nb. , 1996, Physical review. B, Condensed matter.

[51]  H. Ullmaier,et al.  MAGNETIC BEHAVIOR OF TYPE-II SUPERCONDUCTORS WITH SMALL GINZBURG--LANDAU PARAMETERS. , 1973 .

[52]  A. Jacobs INTERACTION OF VORTICES IN TYPE-II SUPERCONDUCTORS NEAR T = T/sub c/. , 1971 .

[53]  B. T. Geĭlikman,et al.  Properties of superconductors having overlapping bands , 1967 .