Genome-Wide DNA Microarray Analysis of Francisella tularensis Strains Demonstrates Extensive Genetic Conservation within the Species but Identifies Regions That Are Unique to the Highly Virulent F. tularensis subsp. tularensis

ABSTRACT Francisella tularensis is a potent pathogen and a possible bioterrorism agent. Little is known, however, to explain the molecular basis for its virulence and the distinct differences in virulence found between the four recognized subspecies, F. tularensis subsp. tularensis, F. tularensis subsp. mediasiatica, F. tularensis subsp. holarctica, and F. tularensis subsp. novicida. We developed a DNA microarray based on 1,832 clones from a shotgun library used for sequencing of the highly virulent strain F. tularensis subsp. tularensis Schu S4. This allowed a genome-wide analysis of 27 strains representing all four subspecies. Overall, the microarray analysis confirmed a limited genetic variation within the species F. tularensis, and when the strains were compared, at most 3.7% of the probes showed differential hybridization. Cluster analysis of the hybridization data revealed that the causative agents of type A and type B tularemia, i.e., F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, respectively, formed distinct clusters. Despite marked differences in their virulence and geographical origin, a high degree of genomic similarity between strains of F. tularensis subsp. tularensis and F. tularensis subsp. mediasiatica was apparent. Strains from Japan clustered separately, as did strains of F. tularensis subsp. novicida. Eight regions of difference (RD) 0.6 to 11.5 kb in size, altogether comprising 21 open reading frames, were identified that distinguished strains of the moderately virulent subspecies F. tularensis subsp. holarctica and the highly virulent subspecies F. tularensis subsp. tularensis. One of these regions, RD1, allowed for the first time the development of an F. tularensis-specific PCR assay that discriminates each of the four subspecies.

[1]  G. Sherlock,et al.  A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  I. Meshcheryakova,et al.  Infraspecific taxonomy of tularemia agent Francisella tularensis McCoy et Chapin. , 1982, Journal of hygiene, epidemiology, microbiology, and immunology.

[3]  A. Sjöstedt,et al.  Evaluation of PCR-Based Methods for Discrimination ofFrancisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella tularensis , 2000, Journal of Clinical Microbiology.

[4]  H. Wilson,et al.  Tularemia vaccine study. I. Intracutaneous challenge. , 1961, Archives of internal medicine.

[5]  Beth A. Lazazzera,et al.  The intracellular function of extracellular signaling peptides , 2001, Peptides.

[6]  C. Dorman DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria , 1991, Infection and immunity.

[7]  F. Fang,et al.  Homocysteine Antagonism of Nitric Oxide-Related Cytostasis in Salmonella typhimurium , 1996, Science.

[8]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Sjöstedt,et al.  The 17 kDa lipoprotein and encoding gene of Francisella tularensis LVS are conserved in strains of Francisella tularensis. , 1992, Microbial pathogenesis.

[10]  C. W. Moss,et al.  Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease , 1989, Journal of clinical microbiology.

[11]  M. T. Baer,et al.  Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. , 1993, The EMBO journal.

[12]  Dienst Ft Tularemia: a perusal of three hundred thirty-nine cases. , 1963 .

[13]  T. Whittam,et al.  Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Camilli,et al.  Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae , 2002, Molecular microbiology.

[15]  N. G. Olsufjev Taxonomy and characteristic of the genus Francisella Dorofeev, 1947. , 1970, Journal of hygiene, epidemiology, microbiology, and immunology.

[16]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[17]  M. Salimans,et al.  Rapid and simple method for purification of nucleic acids , 1990, Journal of clinical microbiology.

[18]  E. Steinhaus,et al.  Contamination of natural waters and mud with Pasteurella tularensis and tularemia in beavers and muskrats in the northwestern United States. , 1951, Bulletin. National Institutes of Health.

[19]  C. E. Hopla The ecology of tularemia. , 1974, Advances in veterinary science and comparative medicine.

[20]  James M. Musser,et al.  Evolutionary genomics of Staphylococcus aureus: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Koskela,et al.  Humoral immunity against Francisella tularensis after natural infection , 1985, Journal of clinical microbiology.

[22]  T. Gingeras,et al.  Comparing genomes within the species Mycobacterium tuberculosis. , 2001, Genome research.

[23]  Hopla Ce The ecology of tularemia. , 1974 .

[24]  D. Guryčová First isolation of Francisella tularensis subsp. tularensis in Europe , 1998, European Journal of Epidemiology.

[25]  W. D. Tigertt Soviet viable Pasteurella tularensis vaccines. A review of selected articles. , 1962, Bacteriological reviews.

[26]  A. Sjöstedt,et al.  Extensive Allelic Variation among Francisella tularensis Strains in a Short-Sequence Tandem Repeat Region , 2001, Journal of Clinical Microbiology.

[27]  H. Wilson,et al.  Tularemia vaccine study. II. Respiratory challenge. , 1961, Archives of internal medicine.

[28]  S. Lory,et al.  Identification of a Genomic Island Present in the Majority of Pathogenic Isolates of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[29]  G W Hatfield,et al.  Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Ferri,et al.  Comparison of Different PCR Approaches for Typing of Francisella tularensis Strains , 2000, Journal of Clinical Microbiology.

[31]  I. Meshcheryakova,et al.  Subspecific Taxonomy of Francisella tularensis McCoy and Chapin 1912 , 1983 .

[32]  F. T. Dienst Tularemia: a perusal of three hundred thirty-nine cases. , 1963, The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society.

[33]  B. M. Stuart,et al.  TULAREMIC PNEUMONIA: REVIEW OF AMERICAN LITERATURE AND REPORT OF 15 ADDITIONAL CASES , 1945 .

[34]  G. Sandström,et al.  Characterization of two unusual clinically significant Francisella strains , 1996, Journal of clinical microbiology.

[35]  J. Wl Tularemia: Dr. Edward Francis and his first 23 isolates of Francisella tularensis. , 1972 .

[36]  J. Mathews,et al.  Amplification and restriction endonuclease digestion of a large fragment of genes coding for rRNA as a rapid method for discrimination of closely related pathogenic bacteria , 1997, Journal of clinical microbiology.

[37]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Sjöstedt,et al.  Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4 , 2001, Journal of applied microbiology.

[39]  P. Savelkoul,et al.  Amplified-Fragment Length Polymorphism Analysis: the State of an Art , 1999, Journal of Clinical Microbiology.

[40]  J. E. Cabrera,et al.  RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. , 2001, Genes & development.

[41]  J. Gordon,et al.  Colonization of Germ-free Transgenic Mice with Genotyped Helicobacter pylori Strains from a Case-Control Study of Gastric Cancer Reveals a Correlation between Host Responses and HsdS Components of Type I Restriction-Modification Systems* 210 , 2002, The Journal of Biological Chemistry.

[42]  Paul Keim,et al.  Francisella tularensis Strain Typing Using Multiple-Locus, Variable-Number Tandem Repeat Analysis , 2001, Journal of Clinical Microbiology.

[43]  S. Andersson,et al.  Microbial genome evolution: sources of variability. , 2002, Current opinion in microbiology.

[44]  Olsufjev Ng,et al.  Infraspecific taxonomy of tularemia agent Francisella tularensis McCoy et Chapin. , 1982 .

[45]  A. Sjöstedt,et al.  Specific detection of Coxiella burnetii through partial amplification of 23S rDNA , 1997, European Journal of Epidemiology.

[46]  Olsufjev Ng Taxonomy and characteristic of the genus Francisella Dorofeev, 1947. , 1970 .

[47]  T. Hadfield,et al.  Genotyping of Francisella tularensis Strains by Pulsed-Field Gel Electrophoresis, Amplified Fragment Length Polymorphism Fingerprinting, and 16S rRNA Gene Sequencing , 2002, Journal of Clinical Microbiology.

[48]  Philip K. Russell,et al.  Tularemia as a biological weapon: medical and public health management. , 2001, JAMA.