Unified construction of fractional generalized orthogonal bases

A unified approach is presented for the synthesis of continuous-time fractional Generalized orthogonal bases including Laguerre-like, Kautz-like and the Generalized-Orthogonal-Basis-like(GOB-like) bases. They extend the definitions of their rational counterpart to fractional differentiation orders. Modes can either be chosen to be real or by pairs complex conjugate. Completeness of fractional Laguerre-like basis is demonstrated.

[1]  A. Oustaloup,et al.  Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).

[2]  A. Oustaloup,et al.  Synthesis of fractional Kautz-like basis with two periodically repeating complex conjugate modes , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[3]  Alain Oustaloup,et al.  Orthonormal basis functions for modeling continuous-time fractional systems 1 , 2003 .

[4]  A. El-Sayed,et al.  On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics , 1999 .

[5]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..

[6]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[7]  Alain Oustaloup,et al.  H2 Norm of Fractional Differential Systems , 2003 .

[8]  Brett Ninness,et al.  Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..

[9]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[10]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[11]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[12]  B. Wahlberg System identification using Laguerre models , 1991 .

[13]  Paul Abbott Generalized Laguerre polynomials and quantum mechanics , 2000 .

[14]  Y. Lacasse,et al.  From the authors , 2005, European Respiratory Journal.

[15]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[16]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[17]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .