Unified construction of fractional generalized orthogonal bases
暂无分享,去创建一个
[1] A. Oustaloup,et al. Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).
[2] A. Oustaloup,et al. Synthesis of fractional Kautz-like basis with two periodically repeating complex conjugate modes , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..
[3] Alain Oustaloup,et al. Orthonormal basis functions for modeling continuous-time fractional systems 1 , 2003 .
[4] A. El-Sayed,et al. On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics , 1999 .
[5] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1997, IEEE Trans. Autom. Control..
[6] Jozsef Bokor,et al. System identification with generalized orthonormal basis functions , 1995, Autom..
[7] Alain Oustaloup,et al. H2 Norm of Fractional Differential Systems , 2003 .
[8] Brett Ninness,et al. Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..
[9] D. Matignon. Stability properties for generalized fractional differential systems , 1998 .
[10] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[11] Alain Oustaloup,et al. Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .
[12] B. Wahlberg. System identification using Laguerre models , 1991 .
[13] Paul Abbott. Generalized Laguerre polynomials and quantum mechanics , 2000 .
[14] Y. Lacasse,et al. From the authors , 2005, European Respiratory Journal.
[15] Olivier Cois,et al. Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .
[16] J. Ragot,et al. Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..
[17] I. M. Pyshik,et al. Table of integrals, series, and products , 1965 .