A powerful estimation scheme with the error-in-variables-model for nonlinear cases: Reactivity ratio estimation examples

Abstract This paper gives an overview of the error-in-variables-model (EVM) procedure for parameter estimation with nonlinear models. It is shown that the nested-iterative EVM algorithm, used in this work, is efficient and powerful, since it provides both true values of the variables and the best estimates of the parameters. The step by step illustration along with evaluation techniques for results, are followed by further discussion about the importance and advantages of combining EVM with design of experiments strategies. With the focus on the performance of the EVM algorithm, an illustrative example of reactivity ratio estimation in copolymerization is included, with single-response (composition data) and multi-response (triad fraction data) scenarios.

[1]  T. Duever,et al.  Estimating Reactivity Ratios From Triad Fraction Data , 2008 .

[2]  S. E. Keeler,et al.  The error-in-variables model applied to parameter estimation when the error covariance matrix is unknown , 1991 .

[3]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[4]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[5]  Thomas A. Duever,et al.  Parameter Estimation in the Error‐in‐Variables Models Using the Gibbs Sampler , 2008 .

[6]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[7]  T. Duever,et al.  The estimation of copolymer reactivity ratios : a review and case studies using the error-in-variables model and nonlinear least squares , 1995 .

[8]  S. E. Keeler,et al.  Parameter Estimation in the Error‐In‐Variables Model , 1993 .

[9]  J. Koenig Chemical microstructure of polymer chains , 1980 .

[10]  M. J. Box Planning Experiments to Test the Adequacy of Non‐Linear Models , 1969 .

[11]  M. Dubé,et al.  A systematic approach to the study of multicomponent polymerization kinetics—the butyl acrylate/methyl methacrylate/vinyl acetate example: 1. Bulk copolymerization , 1995 .

[12]  John F. MacGregor,et al.  The analysis and design of binary vapour‐liquid equilibrium experiments. Part II: The design of experiments , 1977 .

[13]  M. Dubé,et al.  A microcomputer program for estimation of copolymerization reactivity ratios , 1991 .

[14]  Sunita,et al.  Determination of microstructure and glass‐transition temperature of acrylonitrile‐methyl acrylate copolymers by 13C‐NMR spectroscopy , 1992 .

[15]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[16]  W. G. Hunter,et al.  Design of experiments for parameter estimation in multiresponse situations , 1966 .

[17]  T. Duever,et al.  Case studies and literature review on the estimation of copolymerization reactivity ratios , 1998 .

[18]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[19]  P. Reilly,et al.  Model Development and Parameter Estimation for the Oxidation of Pyrrhotite-Containing Rock Surfaces , 2008 .

[20]  Ravi Shankar,et al.  Analysis of quaternary carbon resonances of vinylidene chloride/methyl acrylate copolymers , 2004 .

[21]  Alexander Penlidis,et al.  Optimal sensor selection for copolymerization processes , 1996 .

[22]  Wŏn-yŏng Yang,et al.  Applied Numerical Methods Using MATLAB , 2005 .

[23]  M. Dubé,et al.  Hierarchical data analysis of a replicate experiment in emulsion terpolymerization , 1996 .

[24]  Park M. Reilly,et al.  A Bayesian Study of the Error-in-Variables Model , 1981 .

[25]  T. Duever,et al.  The use of the error‐in‐variables model in terpolymerization , 1983 .

[26]  S. E. Keeler,et al.  The design of experiments when there are errors in all the variables , 1992 .

[27]  T. Duever,et al.  Reactivity Ratio Estimation from Cumulative Copolymer Composition Data , 2011 .