PySCF: the Python‐based simulations of chemistry framework

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines. Using this combined Python/C implementation, the package is as efficient as the best existing C or Fortran-based quantum chemistry programs. In this paper, we document the capabilities and design philosophy of the current version of the PySCF package.

[1]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[2]  Debashree Ghosh,et al.  Orbital optimization in the density matrix renormalization group, with applications to polyenes and beta-carotene. , 2007, The Journal of chemical physics.

[3]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[4]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[5]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[6]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[7]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[8]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[9]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[10]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[11]  Daoling Peng,et al.  Exact two-component Hamiltonians revisited. , 2009, The Journal of chemical physics.

[12]  Qiming Sun,et al.  Co-iterative augmented Hessian method for orbital optimization , 2016, 1610.08423.

[13]  Ali Alavi,et al.  Quasi-degenerate perturbation theory using matrix product states. , 2016, The Journal of chemical physics.

[14]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[15]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[16]  C Filippi,et al.  Energy-consistent pseudopotentials for quantum Monte Carlo calculations. , 2007, The Journal of chemical physics.

[17]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[18]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[19]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[20]  Qiming Sun,et al.  Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries. , 2014, Journal of chemical theory and computation.

[21]  P. Pulay Improved SCF convergence acceleration , 1982 .

[22]  Andreas M. Köster,et al.  Half‐numerical evaluation of pseudopotential integrals , 2006, J. Comput. Chem..

[23]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[25]  Andreas W. Götz,et al.  PyADF — A scripting framework for multiscale quantum chemistry , 2011, J. Comput. Chem..

[26]  Kenneth Ruud,et al.  Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. , 2010, Journal of chemical theory and computation.

[27]  Qiming Sun,et al.  N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). , 2015, Journal of chemical theory and computation.

[28]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[29]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[30]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[31]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[32]  Garnet Kin-Lic Chan,et al.  From plane waves to local Gaussians for the simulation of correlated periodic systems. , 2016, The Journal of chemical physics.

[33]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[34]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[35]  Garnet Kin-Lic Chan,et al.  Quadratic canonical transformation theory and higher order density matrices. , 2009, The Journal of chemical physics.

[36]  Miguel A. L. Marques,et al.  Libxc: A library of exchange and correlation functionals for density functional theory , 2012, Comput. Phys. Commun..

[37]  Qiming Sun,et al.  Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. , 2017, Journal of chemical theory and computation.

[38]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[39]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[40]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[41]  Hans Ågren,et al.  Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm , 1987 .

[42]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[43]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[44]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[46]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[47]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[48]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[49]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Cesare Pisani,et al.  CRYSCOR: a program for the post-Hartree-Fock treatment of periodic systems. , 2012, Physical chemistry chemical physics : PCCP.

[51]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .