Electronic transport in single molecules

Abstract We present a review of recent results on the non-linear transport properties of single molecules using density-functional theory. In particular, we investigate the role of contact chemistry and geometry, current-induced forces, and polarization effects induced by a gate field on the current–voltage characteristics of molecules for which experiments are available. The results show that single molecules, if appropriately tailored, have physical properties that could be useful in electronic applications.

[1]  Mathieu Kemp,et al.  Conductance of Molecular Wires: Influence of Molecule−Electrode Binding , 1999 .

[2]  Zhenan Bao,et al.  Field-Effect Modulation of the Conductance of Single Molecules , 2001, Science.

[3]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[4]  Supriyo Datta,et al.  A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes , 1999 .

[5]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[6]  S. Pantelides,et al.  Temperature effects on the transport properties of molecules. , 2001, Physical review letters.

[7]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[8]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[9]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[10]  M. Di Ventra,et al.  The benzene molecule as a molecular resonant-tunneling transistor , 2000 .

[11]  Doris Schmitt-Landsiedel,et al.  Scaling properties and electromigration resistance of sputtered Ag metallization lines , 2001 .

[12]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[13]  M. Ventra,et al.  Quantized conductance of multiwalled carbon nanotubes , 1999 .

[14]  Phaedon Avouris,et al.  Switching behavior of semiconducting carbon nanotubes under an external electric field , 2001 .

[15]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[16]  L. Nd Bias-induced transfer of an aluminum atom in the scanning tunneling microscope. , 1994 .

[17]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[18]  Landauer theory, inelastic scattering, and electron transport in molecular wires , 1999, cond-mat/9911490.

[19]  Supriyo Datta,et al.  Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy , 1997 .

[20]  James M. Tour,et al.  Molecular Alligator Clips for Single Molecule Electronics. Studies of Group 16 and Isonitriles Interfaced with Au Contacts , 1999 .

[21]  S. Pantelides,et al.  Current-induced forces in molecular wires. , 2002, Physical review letters.

[22]  Hiroshi Yasuda,et al.  Conductance of atomic-scale gold contacts under high-bias voltages , 1997 .

[23]  Massimiliano Di Ventra,et al.  Transport in nanoscale conductors from first principles , 2001 .

[24]  Lang,et al.  Erratum: Field-induced transfer of an atom between two closely spaced electrodes , 1992, Physical review. B, Condensed matter.

[25]  Zhenan Bao,et al.  Self-assembled monolayer organic field-effect transistors , 2001, Nature.

[26]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[27]  Jeffrey W. Baldwin,et al.  UNIMOLECULAR ELECTRICAL RECTIFICATION IN HEXADECYLQUINOLINIUM TRICYANOQUINODIMETHANIDE , 1997 .

[28]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[29]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[30]  M. Ventra,et al.  Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems , 2000 .