Strong coupling between phonon-polaritons and plasmonic nanorods.

We perform far-field spectroscopy of infrared metal antennas on silicon oxide layers of different thickness, where we find a splitting of the plasmonic resonance. This splitting can result in a transparency window, corresponding to suppression of antenna scattering, respectively "cloaking" of the antenna. Backed up by theory, we show that this effect is caused by strong coupling between the metal antenna plasmons and the surface phonon polaritons in the oxide layer. The effect is a kind of induced transparency in which the strength of the phonon-polariton field plays the crucial role. It represents a further tuning possibility for the optical performance of infrared devices.

[1]  Annemarie Pucci,et al.  Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. , 2011, Optics express.

[2]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[3]  A. Pucci,et al.  Plasmonic Enhancement of Vibrational Excitations in the Infrared , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  Harald Giessen,et al.  Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures , 2013, Nature Communications.

[5]  K. L. Kliewer,et al.  Optical Modes of Vibration in an Ionic Crystal Slab Including Retardation. I. Nonradiative Region , 1966 .

[6]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[7]  Hyunchul Kim,et al.  Surface phonon polaritons on SiC substrate for surface-enhanced infrared absorption spectroscopy , 2010 .

[8]  Marco Rahm,et al.  Hybridization induced transparency in composites of metamaterials and atomic media. , 2011, Optics express.

[9]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[10]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[11]  Harald Giessen,et al.  Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement , 2015 .

[12]  J. Faist,et al.  Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide , 2014, 1405.7607.

[13]  Lucas,et al.  Standing-Wave Optical Phonons Confined in Ultrathin Overlayers of Ionic Materials. , 1995, Physical review letters.

[14]  M. Sinclair,et al.  Strong coupling between nanoscale metamaterials and phonons. , 2011, Nano letters.

[15]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .

[16]  T. Taubner,et al.  Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. , 2013, Nano letters.

[17]  R. Hillenbrand,et al.  Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation , 2004, Nature materials.

[18]  T. Taubner,et al.  Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography. , 2014, Optics express.

[19]  Harald Giessen,et al.  Spatial extent of plasmonic enhancement of vibrational signals in the infrared. , 2014, ACS nano.

[20]  J. Aizpurua,et al.  Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas , 2015 .

[21]  D. W. Berreman,et al.  Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films , 1963 .

[22]  M. Anderson Enhanced infrared absorption with dielectric nanoparticles , 2003 .

[23]  T. Nagao,et al.  Antenna Sensing of Surface Phonon Polaritons , 2010 .

[24]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[25]  Wei Gao,et al.  Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy , 1993 .

[26]  Christian Girard,et al.  Plasphonics: local hybridization of plasmons and phonons. , 2013, Optics express.

[27]  F. Xia,et al.  Tunable Plasmon–Phonon Polaritons in Layered Graphene–Hexagonal Boron Nitride Heterostructures , 2015 .

[28]  Fengnian Xia,et al.  Tunable phonon-induced transparency in bilayer graphene nanoribbons. , 2013, Nano letters (Print).

[29]  Thomas Härtling,et al.  Surface-enhanced infrared spectroscopy using nanometer-sized gaps. , 2014, ACS nano.

[30]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[31]  M. Gunde Vibrational modes in amorphous silicon dioxide , 2000 .