The complexity of conservative finite-valued CSPs

We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for $\{0,\infty\}$-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for $\{0,1\}$-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for $\{0,\infty\}$-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.

[1]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[2]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[3]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[4]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[5]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[6]  Mario Szegedy,et al.  A new line of attack on the dichotomy conjecture , 2009, STOC '09.

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[9]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[10]  Martin C. Cooper,et al.  Generalising submodularity and horn clauses: Tractable optimization problems defined by tournament pair multimorphisms , 2008, Theor. Comput. Sci..

[11]  Sanjeev Khanna,et al.  3. Boolean Constraint Satisfaction Problems , 2001 .

[12]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[13]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[14]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[15]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[17]  Peter Jonsson,et al.  The approximability of MAX CSP with fixed-value constraints , 2006, JACM.

[18]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[19]  Jaroslav Nesetril,et al.  Colouring, constraint satisfaction, and complexity , 2008, Comput. Sci. Rev..

[20]  Libor Barto,et al.  CSP dichotomy for special triads , 2009 .

[21]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[22]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[23]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[24]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[25]  Martin C. Cooper,et al.  The complexity of soft constraint satisfaction , 2006, Artif. Intell..

[26]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[27]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[28]  Rustem Takhanov Dichotomy theorem for general Minimum Cost Homomorphisms Problem , 2010, STACS 2010.

[29]  Prasad Raghavendra,et al.  How to Round Any CSP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[30]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[31]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[32]  R. Steele Optimization , 2005 .

[33]  Martin C. Cooper,et al.  An Algebraic Characterisation of Complexity for Valued Constraint , 2006, CP.

[34]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[35]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[36]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[37]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.