FORTRAN programs for space-time multivariate modeling and prediction

Environmental data is nearly always multivariate and often spatial-temporal. Thus to interpolate the data in space or to predict in space-time it is necessary to use a multivariate spatial-temporal method. Cokriging is easily extended to spatial-temporal data if there are valid space-time variograms or covariance functions. Various authors have proposed such models. In this paper, a generalized product-sum model is used with a linear coregionalization model for cokriging. The GSLib ''COKB3D'' program was modified to incorporate the space-time linear coregionalization model (ST-LCM), using the generalized product-sum variogram model. Hence, a new GSLib software, named ''COK2ST'', is proposed. To demonstrate the use of the software, hourly measurements of carbon monoxide and nitrogen dioxide from the Puglia region in Italy are used.

[1]  S. De Iacoa,et al.  Space – time analysis using a general product – sum model , 2000 .

[2]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[3]  Katsuaki Koike,et al.  Extending Multivariate Space-Time Geostatistics for Environmental Data Analysis , 2007 .

[4]  S. De Iaco,et al.  Modeling and prediction of multivariate space-time random fields , 2005, Comput. Stat. Data Anal..

[5]  E. Ziegel,et al.  geoENV VII: Geostatistics for Environmental Applications , 1997 .

[6]  L. D. Cesarea,et al.  FORTRAN programs for space-time modeling , 2000 .

[7]  Mehmet Özger,et al.  Space-time Interpolation by Combining Air Pollution and Meteorologic Variables , 2006 .

[8]  D. E. Myers,et al.  Nonseparable Space-Time Covariance Models: Some Parametric Families , 2002 .

[9]  Sandra De Iaco,et al.  Space–time correlation analysis: a comparative study , 2010 .

[10]  D. E. Myers,et al.  The Linear Coregionalization Model and the Product–Sum Space–Time Variogram , 2003 .

[11]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[12]  R. M. Lark,et al.  Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. , 2006 .

[13]  K. Koike,et al.  Spatio-Temporal Distribution Modeling of Ion Component Concentrations in Groundwater Using Geostatistics , 2002 .

[14]  Richard A. Bilonick,et al.  Monthly hydrogen ion deposition maps for the northeastern U.S. from July 1982 to September 1984 , 1988 .

[15]  J. Giráldez,et al.  Mapping residual pyrite after a mine spill using non co-located spatiotemporal observations. , 2006, Journal of Environmental Quality.

[16]  D. Myers Matrix formulation of co-kriging , 1982 .

[17]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[18]  Phaedon C. Kyriakidis,et al.  Stochastic modeling of atmospheric pollution: a spatial time-series framework. Part II: application to monitoring monthly sulfate deposition over Europe , 2001 .

[19]  J. Zidek,et al.  Multivariate spatial interpolation and exposure to air pollutants , 1994 .

[20]  Donato Posa,et al.  Total Air Pollution And Space-Time Modelling , 2001 .

[21]  Phaedon C. Kyriakidis,et al.  Stochastic modeling of atmospheric pollution: a spatial time-series framework. Part I: methodology , 2001 .

[22]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[23]  R. Sabatier,et al.  A new approach in space‐time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall , 2002 .

[24]  D. Myers,et al.  Problems in space-time kriging of geohydrological data , 1990 .