Chilling with magnetic molecules.

[1]  J. Alonso,et al.  Cryogenic magnetocaloric effect in a ferromagnetic molecular dimer. , 2011, Angewandte Chemie.

[2]  F. Tuna,et al.  Lanthanide discs chill well and relax slowly. , 2011, Chemical communications.

[3]  E. Brechin,et al.  Molecular coolers: The case for [CuII5GdIII4] , 2011 .

[4]  Matteo Mannini,et al.  Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. , 2011, Chemical Society reviews.

[5]  Yan‐Zhen Zheng,et al.  Large magnetocaloric effect in a Wells-Dawson type {Ni6Gd6P6} cage. , 2011, Angewandte Chemie.

[6]  E. Brechin,et al.  Recipes for enhanced molecular cooling. , 2010, Dalton transactions.

[7]  A. Candini,et al.  Mixed-valent Mn supertetrahedra and planar discs as enhanced magnetic coolers. , 2008, Journal of the American Chemical Society.

[8]  M. Affronte,et al.  A ferromagnetic mixed-valent Mn supertetrahedron: towards low-temperature magnetic refrigeration with molecular clusters. , 2007, Angewandte Chemie.

[9]  J. Richter,et al.  Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry , 2007, cond-mat/0703480.

[10]  W. Wernsdorfer,et al.  A ferromagnetically coupled mn(19) aggregate with a record S=83/2 ground spin state. , 2006, Angewandte Chemie.

[11]  E. McInnes,et al.  Spin-enhanced magnetocaloric effect in molecular nanomagnets , 2005, cond-mat/0507407.

[12]  X. Bohigas,et al.  Giant and time-dependent magnetocaloric effect in high-spin molecular magnets , 2000, cond-mat/0011384.

[13]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[14]  R. McMichael,et al.  Enhanced magnetocaloric effect in Gd3Ga5−xFexO12 , 1993 .