Online Robust Non-negative Dictionary Learning for Visual Tracking

This paper studies the visual tracking problem in video sequences and presents a novel robust sparse tracker under the particle filter framework. In particular, we propose an online robust non-negative dictionary learning algorithm for updating the object templates so that each learned template can capture a distinctive aspect of the tracked object. Another appealing property of this approach is that it can automatically detect and reject the occlusion and cluttered background in a principled way. In addition, we propose a new particle representation formulation using the Huber loss function. The advantage is that it can yield robust estimation without using trivial templates adopted by previous sparse trackers, leading to faster computation. We also reveal the equivalence between this new formulation and the previous one which uses trivial templates. The proposed tracker is empirically compared with state-of-the-art trackers on some challenging video sequences. Both quantitative and qualitative comparisons show that our proposed tracker is superior and more stable.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Cewu Lu,et al.  Online Robust Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[4]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[6]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[11]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[17]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[18]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Patrik O. Hoyer,et al.  Non-negative sparse coding , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[20]  Chris H. Q. Ding,et al.  Robust nonnegative matrix factorization using L21-norm , 2011, CIKM '11.

[21]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[23]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[24]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[26]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[27]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[28]  Xuan Li,et al.  Robust Nonnegative Matrix Factorization via Half-Quadratic Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[29]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[30]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[31]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[32]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.