Unruh effect for interacting particles with ultracold atoms

The Unruh effect is a quantum relativistic effect where the accelerated observer perceives the vacuum as a thermal state. Here we propose the experimental realization of the Unruh effect for interacting ultracold fermions in optical lattices by a sudden quench resulting in vacuum acceleration with varying interactions strengths in the real temperature background. We observe the inversion of statistics for the low lying excitations in the Wightman function as a result of competition between the spacetime and BCS Bogoliubov transformations. This paper opens up new perspectives for simulators of quantum gravity.

[1]  E. Martín-Martínez,et al.  Unruh Effect without Thermality. , 2018, Physical review letters.

[2]  Sanjoy Mandal,et al.  Simulating Dirac Hamiltonian in curved space-time by split-step quantum walk , 2017, Journal of Physics Communications.

[3]  M. Blasone,et al.  Modified Unruh effect from generalized uncertainty principle , 2018, The European Physical Journal C.

[4]  J. Becher,et al.  Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms. , 2018, Physical review letters.

[5]  Y. Kuno,et al.  Generalized lattice Wilson–Dirac fermions in (1 + 1) dimensions for atomic quantum simulation and topological phases , 2018, Scientific Reports.

[6]  T. Jacobson,et al.  A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. , 2017, Physical review. X.

[7]  S. Yi,et al.  Universality of the Unruh effect , 2017, 1710.04367.

[8]  T. Esslinger,et al.  Enhancement and sign change of magnetic correlations in a driven quantum many-body system , 2017, Nature.

[9]  J. S. Pedernales,et al.  Dirac Equation in (1+1)-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model. , 2017, Physical review letters.

[10]  M. S. Sarandy,et al.  The Unruh quantum Otto engine , 2017, 1710.03092.

[11]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[12]  P. Zoller,et al.  Quantum simulation and spectroscopy of entanglement Hamiltonians , 2017, Nature Physics.

[13]  R. Giambò,et al.  Curvature-tuned electronic properties of bilayer graphene in an effective four-dimensional spacetime , 2017 .

[14]  Logan W. Clark,et al.  Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point , 2017, 1706.01440.

[15]  Peter T. Brown,et al.  Quantum gas microscopy of an attractive Fermi–Hubbard system , 2017, Nature Physics.

[16]  Nirmalya Kajuri Unruh Effect in nonlocal field theories , 2017, 1704.03793.

[17]  J. Cirac,et al.  Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms , 2017, 1702.05492.

[18]  K. Sengstock,et al.  Investigation of Feshbach resonances in ultracold 40K spin mixtures. , 2017, Physical review. A.

[19]  E. Demler,et al.  A cold-atom Fermi–Hubbard antiferromagnet , 2016, Nature.

[20]  I. McCulloch,et al.  Precursor of the Laughlin state of hard-core bosons on a two-leg ladder , 2016, 1612.05134.

[21]  Maciej Lewenstein,et al.  Generalized laws of thermodynamics in the presence of correlations , 2016, Nature Communications.

[22]  J. Rodríguez-Laguna,et al.  Local quantum thermometry using Unruh–DeWitt detectors , 2016, 1609.01154.

[23]  M. Lewenstein,et al.  Synthetic Unruh effect in cold atoms , 2016, 1606.09505.

[24]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[25]  M. Lewenstein,et al.  Toolbox for Abelian lattice gauge theories with synthetic matter , 2016, 1601.03303.

[26]  Philipp Schindler,et al.  U(1) Wilson lattice gauge theories in digital quantum simulators , 2016, 1612.08653.

[27]  Marcello Calvanese Strinati,et al.  Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders , 2016, 1612.06682.

[28]  A. Celi Different models of gravitating Dirac fermions in optical lattices , 2016, 1612.03076.

[29]  G. Gibbons,et al.  Photon Spheres and Sonic Horizons in Black Holes from Supergravity and Other Theories , 2016, 1608.02202.

[30]  C. Noh,et al.  Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays , 2016, 1607.04821.

[31]  Frank Saueressig,et al.  Quantum gravity signatures in the Unruh effect , 2016, 1605.08015.

[32]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[33]  M. Lewenstein,et al.  Modified spin-wave theory and spin liquid behavior of cold bosons on an inhomogeneous triangular lattice , 2016, 1603.06561.

[34]  S. Montangero,et al.  Lattice gauge theory simulations in the quantum information era , 2016, 1602.03776.

[35]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[36]  M. Lewenstein,et al.  Quantum optics and frontiers of physics: the third quantum revolution , 2016, 1601.04616.

[37]  J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole , 2015, Nature Physics.

[38]  C. Weitenberg,et al.  Experimental reconstruction of the Berry curvature in a Floquet Bloch band , 2015, Science.

[39]  M. Oberthaler,et al.  Schwinger pair production with ultracold atoms , 2015, 1506.01238.

[40]  Stefano Facchini,et al.  Quantum walking in curved spacetime , 2015, Quantum Inf. Process..

[41]  Benni Reznik,et al.  Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices , 2015, Reports on progress in physics. Physical Society.

[42]  Lukas Furst,et al.  Superconductivity Of Metals And Alloys , 2016 .

[43]  N. Szpak,et al.  Current flow paths in deformed graphene: from quantum transport to classical trajectories in curved space , 2015, 1512.06750.

[44]  Alessio Celi,et al.  Probing the edge with cold atoms , 2015, Science.

[45]  J. Cirac,et al.  Fermionic Projected Entangled Pair States and Local U(1) Gauge Theories , 2015, 1507.08837.

[46]  J. Cirac,et al.  Thermal evolution of the Schwinger model with Matrix Product Operators , 2015, 1505.00279.

[47]  Giuseppe Marmo,et al.  Discrete Abelian gauge theories for quantum simulations of QED , 2015, 1503.04340.

[48]  I. B. Spielman,et al.  Visualizing edge states with an atomic Bose gas in the quantum Hall regime , 2015, Science.

[49]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[50]  I. Bloch,et al.  An Aharonov-Bohm interferometer for determining Bloch band topology , 2014, Science.

[51]  P. Zin,et al.  Quantum Signature of Analog Hawking Radiation in Momentum Space. , 2014, Physical review letters.

[52]  F. Verstraete,et al.  Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems , 2014, 1407.1025.

[53]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[54]  Jingmin Hou Moving and merging of Dirac points on a square lattice and hidden symmetry protection , 2014, 1406.1861.

[55]  M. Lewenstein,et al.  Tensor Networks for Lattice Gauge Theories with continuous groups , 2014, 1405.4811.

[56]  E. Rico,et al.  Lattice gauge tensor networks , 2014, 1404.7439.

[57]  K. Sacha,et al.  Erratum: Simulation of non-Abelian lattice gauge fields with a single-component gas , 2014, 1403.1221.

[58]  F. Verstraete,et al.  Matrix product states for gauge field theories. , 2013, Physical review letters.

[59]  E. Rico,et al.  Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.

[60]  A. Iorio,et al.  Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that , 2013, 1308.0265.

[61]  M. Lewenstein,et al.  Synthetic gauge fields in synthetic dimensions. , 2013, Physical review letters.

[62]  I. Carusotto,et al.  Spontaneous quantum emission from analog white holes in a nonlinear optical medium , 2013, 1303.4990.

[63]  Some Links Between General Relativity and Other Parts of Physics , 2014 .

[64]  N. Szpak A Sheet of Graphene: Quantum Field in a Discrete Curved Space , 2014 .

[65]  Giuseppe Di Molfetta,et al.  Quantum Walks in artificial electric and gravitational Fields , 2013, ArXiv.

[66]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[67]  W. Ketterle,et al.  Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. , 2013, Physical review letters.

[68]  J. Barreiro,et al.  Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. , 2013, Physical review letters.

[69]  A. Trombettoni,et al.  Semimetal–superfluid quantum phase transitions in 2D and 3D lattices with Dirac points , 2013, 1306.1441.

[70]  S. Odintsov,et al.  Dynamical Symmetry Breaking in Curved Spacetime , 2013 .

[71]  K. Jansen,et al.  The mass spectrum of the Schwinger model with matrix product states , 2013, 1305.3765.

[72]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[73]  Jivr'i Min'avr,et al.  Dirac fields in curved spacetime as Fermi-Hubbard model with non unitary tunnelings , 2013, 1304.0889.

[74]  K. Sacha,et al.  Simulation of frustrated classical XY models with ultracold atoms in three-dimensional triangular optical lattices , 2012, 1211.4987.

[75]  M W Mitchell,et al.  Simulation of non-Abelian gauge theories with optical lattices , 2012, Nature Communications.

[76]  E. Rico,et al.  Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.

[77]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[78]  Fabrice Debbasch,et al.  Quantum walks as massless Dirac Fermions in curved Space-Time , 2012, 1212.5821.

[79]  J Ruaudel,et al.  Acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate. , 2012, Physical review letters.

[80]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[81]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[82]  M. Lewenstein,et al.  Optical Abelian Lattice Gauge Theories , 2012, 1205.0496.

[83]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[84]  R. Schutzhold,et al.  Hawking radiation from 'phase horizons' in laser filaments? , 2012, 1202.6492.

[85]  G. Gibbons,et al.  Graphene and the Zermelo Optical Metric of the BTZ Black Hole , 2012, 1202.2938.

[86]  M. Lewenstein,et al.  Quantum simulation of an extra dimension. , 2011, Physical review letters.

[87]  Tilman Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[88]  A. Iorio,et al.  The Hawking-Unruh phenomenon on graphene , 2011, 1108.2340.

[89]  M. Lewenstein,et al.  Ultracold atoms in optical lattices , 2012 .

[90]  M. Lewenstein,et al.  Tunable multiple layered Dirac cones in optical lattices. , 2011, Physical review letters.

[91]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[92]  M. Visser,et al.  Analogue Gravity , 2005, Living reviews in relativity.

[93]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[94]  M. Lewenstein,et al.  Dirac equation for cold atoms in artificial curved spacetimes , 2010, 1010.1716.

[95]  G. Lawrence,et al.  Measurement of stimulated Hawking emission in an analogue system. , 2010, Physical review letters.

[96]  M. Lewenstein,et al.  Multi-component quantum gases in spin-dependent hexagonal lattices , 2010, 1005.1276.

[97]  M. Rinaldi,et al.  A Minimal length versus the Unruh effect , 2009, 0910.2860.

[98]  H. Alloul Introduction to Superconductivity , 2011 .

[99]  V. G. Sala,et al.  Hawking radiation from ultrashort laser pulse filaments. , 2010, Physical review letters.

[100]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[101]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[102]  L. Parker,et al.  Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity , 2009 .

[103]  K. L. Lee,et al.  Attractive Hubbard model on a honeycomb lattice: Quantum Monte Carlo study , 2009, 0909.2987.

[104]  I. Carusotto,et al.  Bogoliubov Theory of acoustic Hawking radiation in Bose-Einstein Condensates , 2009, 0907.4305.

[105]  I. Carusotto,et al.  Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates , 2009, 0907.2314.

[106]  R. Parentani,et al.  Black hole radiation in Bose-Einstein condensates , 2009, 0905.3634.

[107]  M. Cazalilla,et al.  Quantum simulation of the Hubbard model: The attractive route , 2008, 0812.4422.

[108]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[109]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[110]  F. Wilczek,et al.  Quantum Field Theory , 1998, Compendium of Quantum Physics.

[111]  D. Jin,et al.  Using photoemission spectroscopy to probe a strongly interacting Fermi gas , 2008, Nature.

[112]  I. Carusotto,et al.  Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates , 2008, 0803.0507.

[113]  A. Kostelecký,et al.  Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.

[114]  U. Leonhardt,et al.  Fiber-Optical Analog of the Event Horizon , 2007, Science.

[115]  I. Carusotto,et al.  Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes , 2007, 0711.4520.

[116]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[117]  J. Cirac,et al.  Methods for detecting acceleration radiation in a Bose-Einstein condensate. , 2007, Physical review letters.

[118]  Fred Garnett,et al.  Colloquium , 2008, Br. J. Educ. Technol..

[119]  F. D. Juan,et al.  Charge inhomogeneities due to smooth ripples in graphene sheets , 2007, 0706.0176.

[120]  A. Cortijo,et al.  Effects of topological defects and local curvature on the electronic properties of planar graphene , 2006, cond-mat/0612374.

[121]  A. Paramekanti,et al.  BCS-BEC crossover on the two-dimensional honeycomb lattice. , 2006, Physical review letters.

[122]  I. Herbut,et al.  Interactions and phase transitions on graphene's honeycomb lattice. , 2006, Physical review letters.

[123]  A. Eckardt,et al.  Superfluid-insulator transition in a periodically driven optical lattice. , 2005, Physical review letters.

[124]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[125]  J. Oitmaa,et al.  Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice , 2004, cond-mat/0406535.

[126]  P. Fedichev,et al.  Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate , 2003, cond-mat/0307200.

[127]  P. Fedichev,et al.  Cosmological quasiparticle production in harmonically trapped superfluid gases , 2003, cond-mat/0303063.

[128]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[129]  P. Fedichev,et al.  Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas. , 2003, Physical review letters.

[130]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[131]  Nobuo Furukawa Antiferromagnetism of the Hubbard Model on a Layered Honeycomb Lattice – Is MgB2 a Nearly-Antiferromagnetic Metal? – , 2001 .

[132]  J. Cirac,et al.  Sonic analog of gravitational black holes in bose-einstein condensates , 2000, Physical review letters.

[133]  S. Odintsov,et al.  Dynamical Symmetry Breaking in Curved Spacetime : Four-Fermion Interactions , 1997, hep-th/9711084.

[134]  Dionys Baeriswyl,et al.  Mott-Hubbard transition and antiferromagnetism on the honeycomb lattice , 1996 .

[135]  Park,et al.  Large-N analysis of the (2+1)-dimensional Thirring model. , 1993, Physical Review D, Particles and fields.

[136]  White,et al.  Phase diagram of the two-dimensional negative-U Hubbard model. , 1989, Physical review letters.

[137]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[138]  J. Hirsch,et al.  Enhanced superconductivity in quasi-two-dimensional systems. , 1986, Physical review letters.

[139]  S. Takagi Vacuum Noise and Stress Induced by Uniform Acceleration Hawking-Unruh Effect in Rindler Manifold of Arbitrary Dimension , 1986 .

[140]  Hirsch Two-dimensional Hubbard model: Numerical simulation study. , 1985, Physical review. B, Condensed matter.

[141]  R. Feynman Simulating physics with computers , 1999 .

[142]  G. Sewell Quantum fields on manifolds: PCT and gravitationally induced thermal states , 1982 .

[143]  W. Unruh Experimental black hole evaporation , 1981 .

[144]  D. Raine General relativity , 1980, Nature.

[145]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[146]  N. D. Birrell,et al.  Massless Thirring model in curved space: Thermal states and conformal anomaly , 1978 .

[147]  W. Unruh Notes on black-hole evaporation , 1976 .

[148]  E. Wichmann,et al.  ON THE DUALITY CONDITION FOR QUANTUM FIELDS , 1976 .

[149]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[150]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[151]  Eyvind H. Wichmann,et al.  On the duality condition for a Hermitian scalar field , 1975 .

[152]  S. Hawking Particle creation by black holes , 1975 .

[153]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[154]  K. Wilson Confinement of Quarks , 1974 .

[155]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[156]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[157]  Mario Soler,et al.  Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .

[158]  W. Thirring A soluble relativistic field theory , 1958 .

[159]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[160]  P. Wallace The Band Theory of Graphite , 1947 .