Carbon-Based Cryoelectronics: Graphene and Carbon Nanotube

[1]  Zhiyong Zhang,et al.  Monolithic Three-Dimensional Integration of Carbon Nanotube Circuits and Sensors for Smart Sensing Chips. , 2023, ACS nano.

[2]  K. Jiang,et al.  Gate-Controlled Quantum Interference Effects in a Clean Single-Wall Carbon Nanotube p-n Junction. , 2023, Physical Review Letters.

[3]  Zhiyong Zhang,et al.  Monolithic three‐dimensional integration of aligned carbon nanotube transistors for high‐performance integrated circuits , 2023, InfoMat.

[4]  Yu Cao,et al.  Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface. , 2023, ACS applied materials & interfaces.

[5]  Zhiyong Zhang,et al.  Heavy Ion Displacement Damage Effect in Carbon Nanotube Field Effect Transistors. , 2023, ACS applied materials & interfaces.

[6]  M. Burghard,et al.  Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons , 2023, Nature Materials.

[7]  Zhiyong Zhang,et al.  Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays. , 2022, ACS nano.

[8]  Lianmao Peng,et al.  Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays , 2022, Nature Communications.

[9]  Georges G. E. Gielen,et al.  Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer , 2022, Nature Electronics.

[10]  Dongbeom Kim,et al.  New Approaches to Produce Large‐Area Single Crystal Thin Films , 2022, Advanced materials.

[11]  Qingwen Li,et al.  Laminated three-dimensional carbon nanotube integrated circuits. , 2022, Nanoscale.

[12]  Kenji Watanabe,et al.  Quantum-noise-limited microwave amplification using a graphene Josephson junction , 2022, Nature Nanotechnology.

[13]  Kenji Watanabe,et al.  A gate-tunable graphene Josephson parametric amplifier , 2022, Nature Nanotechnology.

[14]  J. Kono,et al.  Carbon Nanotube Devices for Quantum Technology , 2022, Materials.

[15]  S. Qin,et al.  A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications , 2022, Micromachines.

[16]  Chau-Ching Chiong,et al.  Low-Noise Amplifier for Next-Generation Radio Astronomy Telescopes: Review of the State-of-the-Art Cryogenic LNAs in the Most Challenging Applications , 2022, IEEE Microwave Magazine.

[17]  M. F. Gonzalez-Zalba,et al.  A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics , 2021, Nature Electronics.

[18]  T. Gisler,et al.  Soft-Clamped Silicon Nitride String Resonators at Millikelvin Temperatures. , 2021, Physical review letters.

[19]  J. Zaumseil,et al.  Charge transport in semiconducting carbon nanotube networks , 2021, Applied Physics Reviews.

[20]  A. Aziz,et al.  Cryogenic memory technologies , 2021, Nature Electronics.

[21]  Kenji Watanabe,et al.  Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance , 2021, Nature.

[22]  Xiaoming Xie,et al.  Graphene nanoribbons for quantum electronics , 2021, Nature Reviews Physics.

[23]  Lianmao Peng,et al.  Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors. , 2021, ACS applied materials & interfaces.

[24]  Wei Wu,et al.  Hf-Contacted High-Performance Air-Stable n-Type Carbon Nanotube Transistors , 2021, ACS Applied Electronic Materials.

[25]  Lianmao Peng,et al.  Enhancement‐Mode Field‐Effect Transistors and High‐Speed Integrated Circuits Based on Aligned Carbon Nanotube Films , 2021, Advanced Functional Materials.

[26]  Lianmao Peng,et al.  Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. , 2021, ACS applied materials & interfaces.

[27]  N. J. Engelsen,et al.  Strained crystalline nanomechanical resonators with quality factors above 10 billion , 2021, Nature Physics.

[28]  P. Kim,et al.  Coulomb Drag between a Carbon Nanotube and Monolayer Graphene. , 2021, Physical review letters.

[29]  Lianmao Peng,et al.  Highly Temperature‐Stable Carbon Nanotube Transistors and Gigahertz Integrated Circuits for Cryogenic Electronics , 2021, Advanced Electronic Materials.

[30]  Lianmao Peng,et al.  Radiofrequency transistors based on aligned carbon nanotube arrays , 2021, Nature Electronics.

[31]  S. Bending,et al.  Frontiers of graphene-based Hall-effect sensors , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  F. Balestra,et al.  Low temperature behavior of FD-SOI MOSFETs from micro- to nano-meter channel lengths , 2021, 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE).

[33]  Chenchen Liu,et al.  Carbon-based CMOS integrated circuit technology: development status and future challenges , 2021 .

[34]  N. J. Engelsen,et al.  Hierarchical tensile structures with ultralow mechanical dissipation , 2021, Nature Communications.

[35]  A. Yacoby,et al.  Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers , 2021, Nature Nanotechnology.

[36]  Alina Niculescu,et al.  Magnetoresistance Behavior of Cryogenic Temperature Sensors Based on Single-Walled Carbon Nanotubes , 2021, IEEE Sensors Journal.

[37]  P. Kim,et al.  Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry , 2021, Nature Nanotechnology.

[38]  Edoardo Charbon,et al.  Cryogenic CMOS Circuits and Systems: Challenges and Opportunities in Designing the Electronic Interface for Quantum Processors , 2021, IEEE Microwave Magazine.

[39]  M. Manfra,et al.  A cryogenic CMOS chip for generating control signals for multiple qubits , 2021 .

[40]  N. Wadefalk,et al.  III-V HEMTs for Cryogenic Low Noise Amplifiers , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[41]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[42]  Lianmao Peng,et al.  Suppression of leakage current in carbon nanotube field-effect transistors , 2020, Nano Research.

[43]  M. F. Gonzalez-Zalba,et al.  Scaling silicon-based quantum computing using CMOS technology , 2020, Nature Electronics.

[44]  Kenji Watanabe,et al.  Phase-dependent dissipation and supercurrent of a graphene-superconductor ring under microwave irradiation , 2020, 2011.07308.

[45]  Fabio Sebastiano,et al.  CMOS-based cryogenic control of silicon quantum circuits , 2020, Nature.

[46]  G. Ghibaudo,et al.  Cryogenic Operation of Thin-Film FDSOI nMOS Transistors: The Effect of Back Bias on Drain Current and Transconductance , 2020, IEEE Transactions on Electron Devices.

[47]  G. Ghibaudo,et al.  Performance and Low-Frequency Noise of 22-nm FDSOI Down to 4.2 K for Cryogenic Applications , 2020, IEEE Transactions on Electron Devices.

[48]  Kenji Watanabe,et al.  A tunable Fabry-Pérot quantum Hall interferometer in graphene , 2020, Nature Nanotechnology.

[49]  Lianmao Peng,et al.  Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates , 2020 .

[50]  P. McEuen,et al.  Magnetic field detection limits for ultraclean graphene Hall sensors , 2020, Nature Communications.

[51]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[52]  J. Aumentado Superconducting Parametric Amplifiers: The State of the Art in Josephson Parametric Amplifiers , 2020, IEEE Microwave Magazine.

[53]  H. Peng,et al.  n‐Type Dirac‐Source Field‐Effect Transistors Based on a Graphene/Carbon Nanotube Heterojunction , 2020, Advanced Electronic Materials.

[54]  Lianmao Peng,et al.  Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics , 2020, Science.

[55]  S. Ilani,et al.  Atomic-like charge qubit in a carbon nanotube enabling electric and magnetic field nano-sensing , 2020, Nature Communications.

[56]  B. Parvais,et al.  Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures , 2020, 2020 IEEE International Reliability Physics Symposium (IRPS).

[57]  C. Enz,et al.  Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors , 2020, IEEE Electron Device Letters.

[58]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[59]  D. J. Reilly,et al.  Challenges in Scaling-up the Control Interface of a Quantum Computer , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[60]  Lianmao Peng,et al.  Carbon nanotube digital electronics , 2019, Nature Electronics.

[61]  Mingyang Yang,et al.  A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers , 2019, Nanomaterials.

[62]  P. Kim,et al.  Guiding Dirac Fermions in Graphene with a Carbon Nanotube. , 2019, Physical review letters.

[63]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[64]  Lianmao Peng,et al.  Carbon Nanotube Film-Based Radio-Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. , 2019, ACS applied materials & interfaces.

[65]  Hartmut Neven,et al.  Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K , 2019, IEEE Journal of Solid-State Circuits.

[66]  D. Englund,et al.  Graphene-based Josephson junction microwave bolometer , 2019, Nature.

[67]  M. Xiao,et al.  Coherent phonon dynamics in spatially separated graphene mechanical resonators , 2019, Proceedings of the National Academy of Sciences.

[68]  Anantha Chandrakasan,et al.  Modern microprocessor built from complementary carbon nanotube transistors , 2019, Nature.

[69]  M. Y. Simmons,et al.  A two-qubit gate between phosphorus donor electrons in silicon , 2019, Nature.

[70]  A. Jauho,et al.  Coulomb drag between a carbon nanotube and monolayer graphene , 2019, Physical Review Research.

[71]  Zhiyong Zhang,et al.  Speeding up carbon nanotube integrated circuits through three-dimensional architecture , 2019, Nano Research.

[72]  Lianmao Peng,et al.  Advances in High‐Performance Carbon‐Nanotube Thin‐Film Electronics , 2019, Advanced Electronic Materials.

[73]  Lianmao Peng,et al.  High‐Performance and Radiation‐Hard Carbon Nanotube Complementary Static Random‐Access Memory , 2019, Advanced Electronic Materials.

[74]  Kenji Watanabe,et al.  Visualizing Poiseuille flow of hydrodynamic electrons , 2019, Nature.

[75]  Christian Enz,et al.  Cryogenic MOSFET Threshold Voltage Model , 2019, ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC).

[76]  A. Bachtold,et al.  Cooling and self-oscillation in a nanotube electromechanical resonator , 2019, Nature Physics.

[77]  E. Laird,et al.  A coherent nanomechanical oscillator driven by single-electron tunnelling , 2019, Nature Physics.

[78]  M. Cassé,et al.  Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening , 2019, IEEE Electron Device Letters.

[79]  T. Kontos,et al.  Synthetic spin–orbit interaction for Majorana devices , 2019, Nature Materials.

[80]  T. Taniguchi,et al.  Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions , 2018, Nature Communications.

[81]  Kenji Watanabe,et al.  Simultaneous voltage and current density imaging of flowing electrons in two dimensions , 2018, Nature Nanotechnology.

[82]  F. Schupp,et al.  Carbon Nanotube Millikelvin Transport and Nanomechanics , 2018, physica status solidi (b).

[83]  Arnout Beckers,et al.  Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures , 2018, Solid-State Electronics.

[84]  Kenji Watanabe,et al.  Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures , 2018, Nature Nanotechnology.

[85]  M. Vinet,et al.  Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization , 2018, IEEE Transactions on Electron Devices.

[86]  E. Laird,et al.  Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier , 2018, Applied Physics Letters.

[87]  A. Bachtold,et al.  Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators , 2018, Nano letters.

[88]  H. Peng,et al.  Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches , 2018, Science.

[89]  Kenji Watanabe,et al.  A ballistic graphene superconducting microwave circuit , 2018, Nature Communications.

[90]  Michael Scalora,et al.  Optically transparent wideband CVD graphene-based microwave antennas , 2018, Applied Physics Letters.

[91]  M. Bonn,et al.  Charge transport mechanism in networks of armchair graphene nanoribbons , 2018, Scientific Reports.

[92]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[93]  O. Legeza,et al.  Imaging the Wigner Crystal of Electrons in One Dimension , 2018, 1803.08523.

[94]  Huanhuan Xie,et al.  Single‐Carbon‐Nanotube Manipulations and Devices Based on Macroscale Anthracene Flakes , 2018, Advanced materials.

[95]  S. Cristoloveanu,et al.  Kink effect in ultrathin FDSOI MOSFETs , 2017 .

[96]  Emil Petre,et al.  Single Wall Carbon Nanotubes Based Cryogenic Temperature Sensor Platforms , 2017, Sensors.

[97]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[98]  Jianshi Tang,et al.  High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. , 2017, Nature nanotechnology.

[99]  M. Vinet,et al.  28nm Fully-depleted SOI technology: Cryogenic control electronics for quantum computing , 2017, 2017 Silicon Nanoelectronics Workshop (SNW).

[100]  Saurabh Sinha,et al.  Replacing copper interconnects with graphene at a 7-nm node , 2017, 2017 IEEE International Interconnect Technology Conference (IITC).

[101]  T. Kontos,et al.  Observation of the frozen charge of a Kondo resonance , 2017, Nature.

[102]  Li Ding,et al.  High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. , 2017, ACS nano.

[103]  C. Ekanayake,et al.  Sensing of single electrons using micro and nano technologies: a review , 2017, Nanotechnology.

[104]  M. Lagally,et al.  Valley dependent anisotropic spin splitting in silicon quantum dots , 2017, npj Quantum Information.

[105]  G. Ghibaudo,et al.  Physics and performance of nanoscale semiconductor devices at cryogenic temperatures , 2017 .

[106]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[107]  Piotr Kula,et al.  A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene , 2016, Sensors.

[108]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[109]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[110]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[111]  Lianmao Peng,et al.  Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. , 2016, Nano letters.

[112]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[113]  K. Jiang,et al.  Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. , 2016, ACS nano.

[114]  M. Green,et al.  The cost of coolers for cooling superconducting devices at temperatures at 4.2 K, 20 K, 40 K and 77 K , 2015 .

[115]  Lili Zhang,et al.  Large area CVD growth of graphene , 2015 .

[116]  J. Rogers,et al.  Recent Progress in Obtaining Semiconducting Single‐Walled Carbon Nanotubes for Transistor Applications , 2015, Advanced materials.

[117]  A. Michon,et al.  Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. , 2015, Nature nanotechnology.

[118]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[119]  Ania C. Bleszynski Jayich,et al.  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[120]  Alexander A. Balandin,et al.  Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors , 2015, 1506.04083.

[121]  A. Isacsson,et al.  Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. , 2015, Nano letters.

[122]  A. Minnich,et al.  Phonon black-body radiation limit for heat dissipation in electronics. , 2015, Nature materials.

[123]  S. Jhi,et al.  Ultimately short ballistic vertical graphene Josephson junctions , 2015, Nature Communications.

[124]  T M Klapwijk,et al.  Ballistic Josephson junctions in edge-contacted graphene. , 2015, Nature nanotechnology.

[125]  Jia Si,et al.  Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. , 2015, ACS nano.

[126]  S. Sarma,et al.  Transport in two-dimensional modulation-doped semiconductor structures , 2014, 1412.8479.

[127]  J. Güttinger,et al.  Nanotube mechanical resonators with quality factors of up to 5 million. , 2014, Nature nanotechnology.

[128]  P. Kim,et al.  Development of high frequency and wide bandwidth Johnson noise thermometry , 2014, 1411.4596.

[129]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[130]  D. Ferry,et al.  Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics , 2014 .

[131]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[132]  E. Laird,et al.  Quantum transport in carbon nanotubes , 2014, 1403.6113.

[133]  T. Kontos,et al.  Stamping single wall nanotubes for circuit quantum electrodynamics , 2014, 1404.0162.

[134]  Guoping Zhang,et al.  Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy , 2014 .

[135]  D. Ohlberg,et al.  Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. , 2014, ACS nano.

[136]  A. Champagne,et al.  Wiedemann-Franz relation and thermal-transistor effect in suspended graphene. , 2014, Nano letters.

[137]  Qing Chen,et al.  Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. , 2013, Nature nanotechnology.

[138]  Hai Wei,et al.  Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits , 2013, 2013 IEEE International Electron Devices Meeting.

[139]  Michael S. Lekas,et al.  Graphene mechanical oscillators with tunable frequency. , 2013, Nature nanotechnology.

[140]  J. Sulpizio,et al.  Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. , 2013, Nature materials.

[141]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[142]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[143]  Byoung Hun Lee,et al.  Sub‐10 nm Graphene Nanoribbon Array Field‐Effect Transistors Fabricated by Block Copolymer Lithography , 2013, Advanced materials.

[144]  Kenneth E. Goodson,et al.  Thermal conduction phenomena in carbon nanotubes and related nanostructured materials , 2013 .

[145]  M. D. Shaw,et al.  Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature , 2013, 1308.2265.

[146]  A. Balandin,et al.  Low-frequency 1/f noise in graphene devices. , 2013, Nature nanotechnology.

[147]  Qiang Zhang,et al.  Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. , 2013, Nanoscale.

[148]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[149]  Fengnian Xia,et al.  Graphene Electronics: Materials, Devices, and Circuits , 2013, Proceedings of the IEEE.

[150]  Qiang Zhang,et al.  Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles , 2013, Nature Communications.

[151]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[152]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[153]  C. Stampfer,et al.  Graphene-based charge sensors , 2013, Nanotechnology.

[154]  W. Wernsdorfer,et al.  Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. , 2013, Nature nanotechnology.

[155]  S. Ilani,et al.  Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. , 2013, Nature nanotechnology.

[156]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[157]  E. Laird,et al.  Valley-spin blockade and spin resonance in carbon nanotubes. , 2012, Nature nanotechnology.

[158]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[159]  K. Schwab,et al.  Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures , 2012, 1202.5737.

[160]  R. Yakimova,et al.  Precision comparison of the quantum Hall effect in graphene and gallium arsenide , 2012, 1202.2985.

[161]  Michael Schroter,et al.  Experimental characterization of temperature‐dependent electron transport in single‐wall multi‐tube carbon nanotube transistors , 2012 .

[162]  Phaedon Avouris,et al.  Charge trapping and scattering in epitaxial graphene , 2011 .

[163]  J. Chaste,et al.  Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. , 2011, Nature nanotechnology.

[164]  J. Chaste,et al.  Parametric amplification and self-oscillation in a nanotube mechanical resonator. , 2011, Nano letters.

[165]  Sheng Wang,et al.  Temperature Performance of Doping‐Free Top‐Gate CNT Field‐Effect Transistors: Potential for Low‐ and High‐Temperature Electronics , 2011 .

[166]  R. Yakimova,et al.  Graphene, universality of the quantum Hall effect and redefinition of the SI system , 2011, 1105.4055.

[167]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[168]  J. Kinaret,et al.  Parametric resonance in nanoelectromechanical single electron transistors. , 2011, Nano letters.

[169]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[170]  Gerhard Klimeck,et al.  Engineered valley-orbit splittings in quantum-confined nanostructures in silicon , 2011, 1102.5311.

[171]  P. Kim,et al.  Radio frequency electrical transduction of graphene mechanical resonators , 2010, 1012.4415.

[172]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[173]  G. Guo,et al.  A graphene quantum dot with a single electron transistor as an integrated charge sensor , 2010, 1008.4868.

[174]  Takao Ishida,et al.  Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. , 2010, ACS nano.

[175]  S. Sarma,et al.  Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots , 2010, 1006.5448.

[176]  Y. Park Editorial for the conducting polymers for carbon electronics themed issue. , 2010, Chemical Society reviews.

[177]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[178]  S. Sarma,et al.  Electronic transport in two-dimensional graphene , 2010, 1003.4731.

[179]  Z. Zhong,et al.  One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. , 2010, Nano letters.

[180]  Hai Wei,et al.  Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[181]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[182]  F. Xia,et al.  Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. , 2009, Nano letters.

[183]  M. Syväjärvi,et al.  Towards a quantum resistance standard based on epitaxial graphene. , 2009, Nature nanotechnology.

[184]  Jari Kinaret,et al.  Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators , 2009, Science.

[185]  James Hone,et al.  Coupling Strongly, Discretely , 2009, Science.

[186]  G. Steele,et al.  Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion , 2009, Science.

[187]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[188]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[189]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[190]  G. Steele,et al.  Carbon nanotubes as ultrahigh quality factor mechanical resonators. , 2009, Nano letters.

[191]  Arindam Ghosh,et al.  Ultralow noise field-effect transistor from multilayer graphene , 2009, 0905.4485.

[192]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[193]  Samanta Piano,et al.  Multiwalled carbon nanotube films as small-sized temperature sensors , 2009 .

[194]  R. Service,et al.  Is Silicon's Reign Nearing Its End? , 2009, Science.

[195]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[196]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[197]  P. Hakonen,et al.  Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor , 2007, 0711.4936.

[198]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[199]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[200]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[201]  E. Campbell,et al.  Carbon nanotube bolometers , 2007 .

[202]  James Hone,et al.  Scaling of resistance and electron mean free path of single-walled carbon nanotubes. , 2007, Physical review letters.

[203]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[204]  L. Vandersypen,et al.  Bipolar supercurrent in graphene , 2006, Nature.

[205]  A. Clerk,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[206]  K. Ishibashi,et al.  Quantum-dot nanodevices with carbon nanotubes , 2006 .

[207]  E. Kymakis,et al.  Electrical properties of single-wall carbon nanotube-polymer composite films , 2006 .

[208]  N. K. Tripathi,et al.  Investigation of Carbon Nanotubes as Low Temperature Sensors , 2006 .

[209]  Arttu Luukanen,et al.  Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications , 2005, cond-mat/0508093.

[210]  S. Bennett,et al.  Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects , 2005, cond-mat/0507646.

[211]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[212]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[213]  B. Jeckelmann,et al.  Revised technical guidelines for reliable dc measurements of the quantized Hall resistance , 2003 .

[214]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[215]  M. Blencowe,et al.  Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor , 2003, cond-mat/0307528.

[216]  C. Berger,et al.  Room Temperature Ballistic Conduction in Carbon Nanotubes , 2002, cond-mat/0211515.

[217]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[218]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[219]  J. Tersoff,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[220]  S. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999, cond-mat/9906055.

[221]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[222]  Cor Claeys,et al.  The Perspectives of Silicon‐on‐Insulator Technologies for Cryogenic Applications , 1994 .

[223]  M. Kastner,et al.  The single-electron transistor , 1992 .

[224]  Radivoje Popovic,et al.  Nonlinearity in hall devices and its compensation , 1988 .

[225]  Bernard Yurke,et al.  Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier. , 1988, Physical review letters.

[226]  Ping Sheng,et al.  Fluctuation-induced tunneling conduction in disordered materials , 1980 .

[227]  H. Zimmer,et al.  PARAMETRIC AMPLIFICATION OF MICROWAVES IN SUPERCONDUCTING JOSEPHSON TUNNEL JUNCTIONS , 1967 .

[228]  Zhi Zhang,et al.  Carbon based electronic technology in post-Moore era: progress, applications and challenges , 2022, Acta Physica Sinica.

[229]  E. Charbon,et al.  Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2020, IEEE Journal of the Electron Devices Society.

[230]  Mary Wootters,et al.  The N3XT Approach to Energy-Efficient Abundant-Data Computing , 2019, Proceedings of the IEEE.

[231]  P. Asbeck,et al.  Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs , 2019, IEEE Electron Device Letters.

[232]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[233]  Lin Xu,et al.  Gigahertz integrated circuits based on carbon nanotube films , 2018 .

[234]  Jia Gao,et al.  Temperature‐Dependent Electrical Transport in Polymer‐Sorted Semiconducting Carbon Nanotube Networks , 2015 .

[235]  I. Stamatin,et al.  CRYOGENIC SENSOR WITH CARBON NANOTUBES , 2014 .

[236]  Vibhor Singh,et al.  Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators , 2010 .

[237]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[238]  Chien-Wei Liu,et al.  Nano Temperature Sensor Using Selective Lateral Growth of Carbon Nanotube Between Electrodes , 2007, IEEE Transactions on Nanotechnology.