Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions.

We present and demonstrate a relatively simple algorithm, which converts a set of slant column density measurements of oxygen dimers (O4) and NO2 at several different elevation angles to determine the atmospheric aerosol extinction and the absolute concentration and mixing ratio of NO2 within the atmospheric boundary layer. In addition the height of the atmospheric boundary layer can usually be derived, also the technique can be readily extended to determine the concentration of several other trace gases including SO2, CH2O, or glyoxal. The algorithm is based on precise radiation transport modelling determination, taking into account the actual aerosol scenario as determined from the O4 measurements. The required hardware is simple encompassing essentially a miniature spectrometer, a small telescope, a pointing mechanism, and a Personal Computer (PC). Effectively the technique combines the simplicity of a passive MAX-DOAS observation with the capability of a much more complex active DOAS instrument to determine path-averaged, absolutely calibrated mixing ratios of atmospheric trace gases at relatively high accuracy.

[1]  U. Platt,et al.  Detection of nitrous acid in the atmosphere by differential optical absorption , 1979 .

[2]  A. R. Meetham,et al.  Vertical Distribution of Ozone in the Atmosphere , 1933, Nature.

[3]  Klaus Pfeilsticker,et al.  On the influence of tropospheric clouds on zenith‐scattered‐light measurements of stratospheric species , 1995 .

[4]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[5]  John P. Burrows,et al.  MAX-DOAS measurements of formaldehyde in the Po-Valley , 2004 .

[6]  Stanley C. Solomon,et al.  Visible spectroscopy at McMurdo Station, Antarctica: 2. Observations of OClO , 1987 .

[7]  H. L. Miller,et al.  Measurements of arctic sunrise surface ozone depletion events at Kangerlussuaq, Greenland (67°N, 51°W) , 1997 .

[8]  J. P. Smith,et al.  Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica: 8. Observations of nighttime NO2 and NO3 from April to October 1991 , 1993 .

[9]  U. Platt,et al.  Ground-based imaging differential optical absorption spectroscopy of atmospheric gases. , 2004, Applied optics.

[10]  Ulrich Platt,et al.  Observations of BrO and its vertical distribution during surface ozone depletion at Alert , 2002 .

[11]  R. Jakoubek,et al.  Measurement of tropospheric trace gases by long‐path differential absorption spectroscopy during the 1993 OH Photochemistry Experiment , 1997 .

[12]  Ulrich Platt,et al.  UV‐visible observations of atmospheric O4 absorptions using direct moonlight and zenith‐scattered sunlight for clear‐sky and cloudy sky conditions , 2002 .

[13]  A. Ravishankara,et al.  Remote sensing observations of daytime column NO2 during the Airborne Antarctic Ozone Experiment, August 22 to October 2, 1987 , 1989 .

[14]  Ulrich Platt,et al.  Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species , 2000 .

[15]  George W. Kattawar,et al.  Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols , 1981 .

[16]  Dietrich Althausen,et al.  Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) , 2003 .

[17]  Klaus Pfeilsticker,et al.  Groundbased spectroscopic measurements of stratospheric NO2 and OClO in Arctic winter 1989/90 , 1993 .

[18]  S. Solomon,et al.  Atmospheric NO3 3. Sunrise disappearance and the stratospheric profile , 1990 .

[19]  R. Hoff,et al.  Remote SO2 Mass Flux Measurements Using COSPEC , 1981 .

[20]  J. Burrows,et al.  DOAS Zenith Sky Observations: 2. Seasonal Variation of BrO Over Bremen (53°N) 1994-1995 , 1999 .

[21]  Stanley C. Solomon,et al.  On the evaluation of air mass factors for atmospheric near‐ultraviolet and visible absorption spectroscopy , 1993 .

[22]  C. V. Friedeburg Derivation of Trace Gas Information combining Differential Optical Absorption Spectroscopy with Radiative Transfer Modelling , 2003 .

[23]  U. Platt Modern methods of the measurement of atmospheric trace gases , 1999 .

[24]  K. Pfeilsticker,et al.  Spectroscopic measurements of tropospheric iodine oxide at Neumayer Station, Antarctica , 2001 .

[25]  Measurements of the Amount of Ozone in the Earth's Atmosphere and Its Relation to Other Geophysical Conditions. Part II , 1926 .

[26]  H. Bovensmann,et al.  Measurements of iodine monoxide (IO) above Spitsbergen , 2000 .

[27]  C. T. McElroy,et al.  Evidence for bromine monoxide in the free troposphere during the Arctic polar sunrise , 1999, Nature.

[28]  L. Marquard,et al.  Corrections for zenith scattered light DOAS , 1997 .

[29]  James B. Kerr,et al.  Altitude distributions of stratospheric constituents from ground‐based measurements at twilight , 1991 .

[30]  R. McKenzie,et al.  Seasonal variations in stratospheric NO2 at 45°S , 1982 .

[31]  G. Mount The measurement of tropospheric OH by long path absorption 1. Instrumentation , 1992 .

[32]  R. S. Hyde,et al.  Stratospheric NO2: 1. Observational method and behavior at mid‐latitude , 1979 .

[33]  Ulrich Platt,et al.  Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV , 1980 .

[34]  U. Platt,et al.  Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. , 1996, Applied optics.

[35]  Michael D. King,et al.  Aerosol size distributions obtained by inversion of spectral optical depth measurements , 1978 .

[36]  K. Pfeilsticker,et al.  Optical path modifications due to tropospheric clouds: Implications for zenith sky measurements of stratospheric gases , 1998 .

[37]  K. Pfeilsticker,et al.  Cloudy sky optical paths as derived from differential optical absorption spectroscopy observations , 1998 .

[38]  Roderic L. Jones,et al.  Rotational Raman scattering and the ring effect in zenith‐sky spectra , 1995 .

[39]  Ulrich Platt,et al.  Detection of NO3 in the polluted troposphere by differential optical absorption , 1980 .

[40]  Ulrich Platt,et al.  A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules , 1989 .

[41]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[42]  K. Muller Correlation Spectroscopy , 1979, Other Conferences.

[43]  R. Jakoubek,et al.  Observations of the Nighttime Abundance of OClO in the Winter Stratosphere Above Thule, Greenland , 1988, Science.

[44]  J. Noxon,et al.  Nitrogen Dioxide in the Stratosphere and Troposphere Measured by Ground-Based Absorption Spectroscopy , 1975, Science.

[45]  C. Sioris,et al.  Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering. , 1999, Applied optics.

[46]  John P. Burrows,et al.  Validation of SCIAMACHY with AMAXDOAS Measurements from the DLR Falcon , 2003 .

[47]  Daniele Bortoli,et al.  Off-axis measurements of atmospheric trace gases by use of an airborne ultraviolet-visible spectrometer. , 2002, Applied optics.

[48]  U. Platt,et al.  Ground‐based measurements of halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX‐DOAS , 2004 .

[49]  J. Grainger,et al.  Anomalous Fraunhofer Line Profiles , 1962, Nature.

[50]  Stanley C. Solomon,et al.  On the interpretation of zenith sky absorption measurements , 1987 .

[51]  A. McGonigle,et al.  A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance , 2003 .

[52]  Stanley C. Solomon,et al.  Observations of the stratospheric BrO column over Colorado, 40°N , 1994 .

[53]  J. P. Smith,et al.  Visible and near‐ultraviolet spectroscopy at McMurdo Station, Antarctica: 9. Observations of OClO from April to October 1991 , 1993 .

[54]  Roderic L. Jones,et al.  Mid‐latitude observations of the seasonal variation of BrO 1. Zenith‐sky measurements , 1997 .

[55]  John P. Burrows,et al.  MAX-DOAS measurements of atmospheric trace gases in Ny-Ålesund , 2003 .

[56]  A. Vandaele,et al.  Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O , 1999, Environmental science and pollution research international.

[57]  U. Platt,et al.  Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption , 1979 .

[58]  G. Hönninger Halogen Oxide Studies in the Boundary Layer by Multi Axis Differential Optical Absorption Spectroscopy and Active Longpath-DOAS , 2002 .

[59]  J. P. Smith,et al.  Atmospheric NO3: 4. Vertical profiles at middle and polar latitudes at sunrise , 1993 .

[60]  U. Platt,et al.  MAX‐DOAS measurements of BrO and NO2 in the marine boundary layer , 2003 .

[61]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[62]  Giorgio Giovanelli,et al.  Intercomparison of UV/visible spectrometers for measurements of stratospheric NO2 for the Network for the Detection of Stratospheric Change , 1995 .

[63]  U. Platt,et al.  Detection of bromine monoxide in a volcanic plume , 2003, Nature.

[64]  L. Cinquini,et al.  Photolysis frequency measurements at the South Pole during ISCAT‐98 , 2001 .

[65]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[66]  Ulrich Platt,et al.  OH ‐ Radicals in the lower troposphere , 1976 .

[67]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[68]  G. König‐Langlo,et al.  Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region , 2004 .

[69]  J. Pommereau,et al.  Observations of the vertical distribution of stratospheric OClO , 1994 .

[70]  U. Platt,et al.  Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer. , 1997, Applied optics.

[71]  Ulrich Platt,et al.  MAX‐DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content , 2004 .