Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs

Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery.

[1]  H. Mori,et al.  Bmc Molecular Biology the Yfhq Gene of Escherichia Coli Encodes a Trna:cm32/um32 Methyltransferase , 2022 .

[2]  N. Moran,et al.  Parallel genomic evolution and metabolic interdependence in an ancient symbiosis , 2007, Proceedings of the National Academy of Sciences.

[3]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[4]  Lorenzo Segovia,et al.  The hidden universal distribution of amino acid biosynthetic networks: a genomic perspective on their origins and evolution , 2008, Genome Biology.

[5]  H. Santos,et al.  Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes , 2002, Extremophiles.

[6]  C. Gustafsson,et al.  The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity. , 1997, Nucleic acids research.

[7]  F. Avilés,et al.  Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions* , 2014, The Journal of Biological Chemistry.

[8]  D. Holmes,et al.  Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus. , 2014, Microbiology.

[9]  K. Schleifer,et al.  Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences , 2014, Nature Reviews Microbiology.

[10]  M. Lynch,et al.  Ecology and exploration of the rare biosphere , 2015, Nature Reviews Microbiology.

[11]  Nuno Empadinhas,et al.  Diversity and biosynthesis of compatible solutes in hyper/thermophiles. , 2006, International microbiology : the official journal of the Spanish Society for Microbiology.

[12]  Radhey S. Gupta,et al.  The Phylogeny and Signature Sequences Characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes , 2004, Critical reviews in microbiology.

[13]  Holly M. Bik,et al.  PhyloSift: phylogenetic analysis of genomes and metagenomes , 2014, PeerJ.

[14]  P. Christensen,et al.  Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms , 2000 .

[15]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[16]  R. Cavicchioli,et al.  Influence of Temperature on tRNA Modification in Archaea: Methanococcoides burtonii (Optimum Growth Temperature [Topt], 23°C) and Stetteria hydrogenophila (Topt, 95°C) , 2003 .

[17]  S. Douthwaite,et al.  YibK is the 2'-O-methyltransferase TrmL that modifies the wobble nucleotide in Escherichia coli tRNA(Leu) isoacceptors. , 2010, RNA.

[18]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[19]  D. Noguera,et al.  mathFISH, a Web Tool That Uses Thermodynamics-Based Mathematical Models for In Silico Evaluation of Oligonucleotide Probes for Fluorescence In Situ Hybridization , 2010, Applied and Environmental Microbiology.

[20]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[21]  Yihua Huang,et al.  Structure of the nonameric bacterial amyloid secretion channel , 2014, Proceedings of the National Academy of Sciences.

[22]  Rolf Backofen,et al.  CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems , 2013, Nucleic acids research.

[23]  Hiroyuki Kimura,et al.  Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments , 2006, Applied and Environmental Microbiology.

[24]  Evan Andersen,et al.  ProDeGe: a computational protocol for fully automated decontamination of genomes , 2015, The ISME Journal.

[25]  J. Wagner,et al.  Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. , 2004, Journal of molecular biology.

[26]  S. Harayama,et al.  Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. , 2010, International journal of systematic and evolutionary microbiology.

[27]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[28]  T. Nishino,et al.  Fusion-type lycopene beta-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. , 2003, Biochemical and biophysical research communications.

[29]  J. Kuriyan,et al.  Crystal Structure of the Processivity Clamp Loader Gamma (γ) Complex of E. coli DNA Polymerase III , 2001, Cell.

[30]  D. Schüler,et al.  The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense , 2012, Journal of bacteriology.

[31]  Lynne A. Goodwin,et al.  Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling , 2013, Standards in genomic sciences.

[32]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[33]  N. Pace,et al.  Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[35]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[36]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[37]  D. Bolam,et al.  Glycan recognition by the Bacteroidetes Sus-like systems. , 2012, Current opinion in structural biology.

[38]  H. Hori Methylated nucleosides in tRNA and tRNA methyltransferases , 2014, Front. Genet..

[39]  P. François,et al.  Importance of Bacillithiol in the Oxidative Stress Response of Staphylococcus aureus , 2013, Infection and Immunity.

[40]  Yuzhen Ye,et al.  Expanding the catalog of cas genes with metagenomes , 2013, Nucleic acids research.

[41]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[42]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[43]  Janusz M. Bujnicki,et al.  Molecular evolution of dihydrouridine synthases , 2012, BMC Bioinformatics.

[44]  J. Dodsworth,et al.  Pyrosequencing Reveals High-Temperature Cellulolytic Microbial Consortia in Great Boiling Spring after In Situ Lignocellulose Enrichment , 2013, PloS one.

[45]  S. Cianchetta,et al.  Proteolysis of the proofreading subunit controls the assembly of Escherichia coli DNA polymerase III catalytic core. , 2009, Biochimica et biophysica acta.

[46]  E. Shock,et al.  Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin , 2009, Extremophiles.

[47]  Č. Venclovas,et al.  Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes , 2013, Nucleic acids research.

[48]  R. Huber,et al.  Crystal structure of gingipain R: an Arg‐specific bacterial cysteine proteinase with a caspase‐like fold , 1999, The EMBO journal.

[49]  Thijs J. G. Ettema,et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes , 2015, Nature.

[50]  Susannah G. Tringe,et al.  The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem , 2013, Front. Microbiol..

[51]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[52]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[53]  Kenneth H. Williams,et al.  Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment , 2013, Nature Communications.

[54]  B. Hungate,et al.  A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing , 2013, PloS one.

[55]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[56]  Kenneth H. Williams,et al.  Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling , 2015, Current Biology.

[57]  Sathees B. C. Chandra,et al.  The linkage between reverse gyrase and hyperthermophiles: A review of their invariable association , 2009, The Journal of Microbiology.

[58]  B. Hungate,et al.  Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ∼80 °C hot springs in the US Great Basin , 2011, Geobiology.

[59]  Derek R Lovley,et al.  Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus , 2011, The ISME Journal.

[60]  S. Giovannoni,et al.  Implications of streamlining theory for microbial ecology , 2014, The ISME Journal.

[61]  D. M. Ward,et al.  Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. , 2012, Environmental microbiology.

[62]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[63]  H. Hirakawa,et al.  A protein secretion system linked to bacteroidete gliding motility and pathogenesis , 2009, Proceedings of the National Academy of Sciences.

[64]  N. Pace,et al.  Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring , 1998, Journal of bacteriology.

[65]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[66]  Dmitry Antipov,et al.  Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products , 2013, J. Comput. Biol..

[67]  Rudolf Amann,et al.  Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria , 2002, Applied and Environmental Microbiology.

[68]  Eugene V Koonin,et al.  The basic building blocks and evolution of CRISPR-CAS systems. , 2013, Biochemical Society transactions.

[69]  Edward M. Rubin,et al.  Searching for new branches on the tree of life , 2014, Science.

[70]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[71]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[72]  S. Grasby,et al.  Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments , 2014, The ISME Journal.

[73]  M. Chapman,et al.  Curli biogenesis: order out of disorder. , 2014, Biochimica et biophysica acta.

[74]  Andrew Robinson,et al.  Architecture and Conservation of the Bacterial DNA Replication Machinery, an Underexploited Drug Target , 2012, Current drug targets.

[75]  I-Min A. Chen,et al.  IMG/M 4 version of the integrated metagenome comparative analysis system , 2013, Nucleic Acids Res..

[76]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[77]  S. Gavrilov,et al.  Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. , 2013, Environmental microbiology.

[78]  Brian C. Thomas,et al.  Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla , 2013, mBio.

[79]  D. Bryant,et al.  Prokaryotic photosynthesis and phototrophy illuminated. , 2006, Trends in microbiology.

[80]  K. Weber,et al.  Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction , 2006, Nature Reviews Microbiology.

[81]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[82]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[83]  G. Michel,et al.  Environmental and Gut Bacteroidetes: The Food Connection , 2011, Front. Microbio..

[84]  H. Brüssow,et al.  Comparative Genomics of Streptococcus thermophilus Phage Species Supports a Modular Evolution Theory , 1999, Journal of Virology.

[85]  Natalia N. Ivanova,et al.  Microbial species delineation using whole genome sequences , 2015, Nucleic acids research.

[86]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[87]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[88]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[89]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[90]  N. Pace Mapping the Tree of Life: Progress and Prospects , 2009, Microbiology and Molecular Biology Reviews.

[91]  J. Dodsworth,et al.  Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities , 2012, The ISME Journal.

[92]  Donovan H. Parks,et al.  First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking , 2015, PeerJ.

[93]  Connor T. Skennerton,et al.  Crass: identification and reconstruction of CRISPR from unassembled metagenomic data , 2013, Nucleic acids research.

[94]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[95]  P. Forterre,et al.  Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. , 2007, Archaea.

[96]  M. Wagner,et al.  Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics , 2012, PloS one.

[97]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[98]  J. Helmann,et al.  Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli , 2010, Proceedings of the National Academy of Sciences.

[99]  Rolf Backofen,et al.  CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci , 2014, Bioinform..

[100]  R. Wierenga,et al.  A comprehensive analysis of the geranylgeranylglyceryl phosphate synthase enzyme family identifies novel members and reveals mechanisms of substrate specificity and quaternary structure organization , 2014, Molecular microbiology.

[101]  M. Strous,et al.  Microbial nitrate respiration--genes, enzymes and environmental distribution. , 2011, Journal of biotechnology.

[102]  Natalia N. Ivanova,et al.  The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes , 2009, Standards in genomic sciences.