Structure and thermal stability of spectrally selective absorber based on AlCrON coating for solar-thermal conversion applications

[1]  S. Shen,et al.  Large‐Scale Nanophotonic Solar Selective Absorbers for High‐Efficiency Solar Thermal Energy Conversion , 2015, Advanced materials.

[2]  Gang Chen,et al.  Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors , 2015 .

[3]  Gang Chen,et al.  Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with W Infrared Reflectors , 2014 .

[4]  Tae Kyoung Kim,et al.  High performance multi-scaled nanostructured spectrally selective coating for concentrating solar power , 2014 .

[5]  Gang Chen,et al.  A review of cermet-based spectrally selective solar absorbers , 2014 .

[6]  T. Fu,et al.  Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique , 2014 .

[7]  J. P. Nshimiyimana,et al.  Optical design and co-sputtering preparation of high performance Mo–SiO2 cermet solar selective absorbing coating , 2013 .

[8]  Ali Khatibi,et al.  Structural and mechanical properties of Cr–Al–O–N thin films grown by cathodic arc deposition , 2012 .

[9]  T. Fu,et al.  Transient Calorimetric Measurement Method for Total Hemispherical Emissivity , 2012 .

[10]  H. Barshilia,et al.  Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications , 2012 .

[11]  Tairan Fu,et al.  A steady-state measurement system for total hemispherical emissivity , 2012 .

[12]  Cong Wang,et al.  The spectral properties and thermal stability of NbTiON solar selective absorbing coating , 2012 .

[13]  M. Addonizio,et al.  Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature , 2010 .

[14]  M. Addonizio,et al.  Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature , 2009 .

[15]  Shumao Wang,et al.  Preparation and thermal stability on non-vacuum high temperature solar selective absorbing coatings , 2009 .

[16]  H. Barshilia,et al.  Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering , 2008 .

[17]  H. Barshilia,et al.  TiAlN∕TiAlON∕Si3N4 tandem absorber for high temperature solar selective applications , 2006 .

[18]  Paul Gannon,et al.  Oxidation studies of CrAlON nanolayered coatings on steel plates , 2006 .

[19]  Ewa Wäckelgård,et al.  Optimization of solar absorbing three-layer coatings , 2006 .

[20]  E. Wäckelgård,et al.  Optical constants of sputtered Ni/NiO solar absorber film: depth-profiled characterization , 2004 .

[21]  R. Jeanloz,et al.  Raman spectroscopy and x-ray diffraction of phase transitions in Cr 2 O 3 to 61 GPa , 2004 .

[22]  Yaogen Shen,et al.  High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering , 2004 .

[23]  V. M. Donnelly,et al.  Profiling nitrogen in ultrathin silicon oxynitrides with angle-resolved x-ray photoelectron spectroscopy , 2000 .

[24]  D. Mills,et al.  High efficiency MoAl2O3 cermet selective surfaces for high-temperature application , 1996 .

[25]  S. Goldsmith,et al.  Macroparticle contamination in cathodic arc coatings: generation, transport and control☆ , 1992 .

[26]  T. Hara,et al.  Properties of Titanium Nitride Films for Barrier Metal in Aluminum Ohmic Contact Systems , 1991 .

[27]  S. Berthier,et al.  Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C , 1985 .