Stochastic evolution equations with random generators

We prove the existence of a unique mild solution for a stochastic evolution equation on a Hilbert space driven by a cylindrical Wiener process. The generator of the corresponding evolution system is supposed to be random and adapted to the filtration generated by the Wiener process. The proof is based on a maximal inequality for the Skorohod integral deduced from the Ito's formula for this anticipating stochastic integral.

[1]  É. Pardoux,et al.  Intégrales Hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé , 1992 .

[2]  P. Malliavin Stochastic calculus of variation and hypoelliptic operators , 1978 .

[3]  A. Skorokhod On a generalization of the stochastic integral , 1976 .

[4]  H. Sugita On a characterization of the Sobolev spaces over an abstract Wiener space , 1985 .

[5]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[6]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[7]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[8]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[9]  Moshe Zakai Some moment inequalities for stochastic integrals and for solutions of stochastic differential equations , 1967 .

[10]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[11]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[12]  On equivalence of solution to stochastic differential equation with antipating evolution system , 1990 .

[13]  David Nualart,et al.  Stochastic calculus with anticipating integrands , 1988 .

[14]  D. Nualart,et al.  Continuity of some anticipating integral processes , 1998 .

[15]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[16]  E. Pardoux,et al.  Équations aux dérivées partielles stochastiques de type monotone , 1975 .

[17]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .