Orbital-angular-momentum crosstalk and temporal fading in a terrestrial laser link using single-mode fiber coupling.

Using a mobile experimental testbed, we perform a series of measurements on the detection of laser beams carrying orbital angular momentum (OAM) to evaluate turbulent channel distortions and crosstalk among receive states in an 84-m roofed optical link. We find that a receiver assembly using single-mode fiber coupling serves as a good signal selector in terms of crosstalk rejection. From the recorded temporal channel waveforms, we estimate average crosstalk profiles and propose an appropriate probability density function for the fluctuations of the detected OAM signal. Further measurements of OAM crosstalk are described for a horizontal 400-m link established over our campus.

[1]  Shlomi Arnon,et al.  Effects of atmospheric turbulence and building sway on optical wireless-communication systems. , 2003, Optics letters.

[2]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[3]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[4]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[5]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[6]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[7]  Jaime A. Anguita,et al.  Experimental analysis of orbital angular momentum-carrying beams in turbulence , 2011, Optical Engineering + Applications.

[8]  B. Vasic,et al.  Error-Correction Coded Orbital-Angular-Momentum Modulation for FSO Channels Affected by Turbulence , 2012, Journal of Lightwave Technology.

[9]  Robert W Boyd,et al.  Influence of atmospheric turbulence on states of light carrying orbital angular momentum. , 2012, Optics letters.

[10]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics Express.

[11]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[12]  Minho Kwon,et al.  High fidelity detection of the orbital angular momentum of light by time mapping , 2013 .

[13]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[14]  A. Willner,et al.  Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization. , 2014, Optics letters.

[15]  A. Willner,et al.  Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. , 2014, Optics letters.

[16]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[17]  Ivan B. Djordjevic,et al.  Coherent Multimode OAM Superpositions for Multidimensional Modulation , 2014, IEEE Photonics Journal.

[18]  Jian Wang,et al.  Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system. , 2015, Optics letters.