Dimensionality Reduction of Massive Sparse Datasets Using Coresets
暂无分享,去创建一个
[1] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[2] M. Inaba. Application of weighted Voronoi diagrams and randomization to variance-based k-clustering , 1994, SoCG 1994.
[3] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[4] Nathan Halko,et al. Randomized methods for computing low-rank approximations of matrices , 2012 .
[5] Hairong Kuang,et al. The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).
[6] R. Lathe. Phd by thesis , 1988, Nature.
[7] Xin Xiao,et al. On the Sensitivity of Shape Fitting Problems , 2012, FSTTCS.
[8] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[9] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[10] David P. Woodruff,et al. Optimal Approximate Matrix Product in Terms of Stable Rank , 2015, ICALP.
[11] Petros Drineas,et al. A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality , 2010, Inf. Process. Lett..
[12] Jakub W. Pachocki,et al. Online Row Sampling , 2016, APPROX-RANDOM.
[13] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[14] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[15] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[16] David P. Woodruff,et al. Frequent Directions: Simple and Deterministic Matrix Sketching , 2015, SIAM J. Comput..
[17] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[18] Nikhil Srivastava,et al. Twice-ramanujan sparsifiers , 2008, STOC '09.
[19] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[20] Edo Liberty,et al. Simple and deterministic matrix sketching , 2012, KDD.
[21] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[22] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[23] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[24] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[25] L. Schulman,et al. Universal ε-approximators for integrals , 2010, SODA '10.
[26] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[27] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.