Dimensionality Reduction of Massive Sparse Datasets Using Coresets

In this paper we present a practical solution with performance guarantees to the problem of dimensionality reduction for very large scale sparse matrices. We show applications of our approach to computing the Principle Component Analysis (PCA) of any $n\times d$ matrix, using one pass over the stream of its rows. Our solution uses coresets: a scaled subset of the $n$ rows that approximates their sum of squared distances to \emph{every} $k$-dimensional \emph{affine} subspace. An open theoretical problem has been to compute such a coreset that is independent of both $n$ and $d$. An open practical problem has been to compute a non-trivial approximation to the PCA of very large but sparse databases such as the Wikipedia document-term matrix in a reasonable time. We answer both of these questions affirmatively. Our main technical result is a new framework for deterministic coreset constructions based on a reduction to the problem of counting items in a stream.

[1]  David P. Woodruff,et al.  Low rank approximation and regression in input sparsity time , 2012, STOC '13.

[2]  M. Inaba Application of weighted Voronoi diagrams and randomization to variance-based k-clustering , 1994, SoCG 1994.

[3]  Michael B. Cohen,et al.  Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.

[4]  Nathan Halko,et al.  Randomized methods for computing low-rank approximations of matrices , 2012 .

[5]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[6]  R. Lathe Phd by thesis , 1988, Nature.

[7]  Xin Xiao,et al.  On the Sensitivity of Shape Fitting Problems , 2012, FSTTCS.

[8]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[9]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[10]  David P. Woodruff,et al.  Optimal Approximate Matrix Product in Terms of Stable Rank , 2015, ICALP.

[11]  Petros Drineas,et al.  A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality , 2010, Inf. Process. Lett..

[12]  Jakub W. Pachocki,et al.  Online Row Sampling , 2016, APPROX-RANDOM.

[13]  Kenneth L. Clarkson,et al.  Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.

[14]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[15]  Dan Feldman,et al.  Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.

[16]  David P. Woodruff,et al.  Frequent Directions: Simple and Deterministic Matrix Sketching , 2015, SIAM J. Comput..

[17]  Michael Langberg,et al.  A unified framework for approximating and clustering data , 2011, STOC.

[18]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[19]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[20]  Edo Liberty,et al.  Simple and deterministic matrix sketching , 2012, KDD.

[21]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[22]  C. Paige Computational variants of the Lanczos method for the eigenproblem , 1972 .

[23]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[24]  Dimitris Achlioptas,et al.  Fast computation of low rank matrix approximations , 2001, STOC '01.

[25]  L. Schulman,et al.  Universal ε-approximators for integrals , 2010, SODA '10.

[26]  Sanjeev Arora,et al.  A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.

[27]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.