Novel computational methods for fatig life modeling of composite materials

Novel computational methods such as artificial neural networks, adaptive neuro-fuzzy inference systems and genetic programming are used in this chapter for the modeling of the nonlinear behavior of composite laminates subjected to constant amplitude loading. The examined computational methods are stochastic nonlinear regression tools, and can therefore be used to model the fatigue behavior of any material, provided that sufficient data are available for training. They are material-independent methods that simply follow the trend of the available data, in each case giving the best estimate of their behavior. Application on a wide range of experimental data gathered after fatigue testing glass/epoxy and glass/polyester laminates proved that their modeling ability compares favorably with, and is to some extent superior to, other modeling techniques.

[1]  Erdogan Madenci,et al.  Application of genetic algorithm for optimum design of bolted composite lap joints , 2007 .

[2]  M. A. Jarrah,et al.  Neuro-Fuzzy Modeling of Fatigue Life Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminates , 2002 .

[3]  A. Morris,et al.  Fuzzy neural networks for nonlinear systems modelling , 1995 .

[4]  Layne T. Watson,et al.  Improved Genetic Algorithm for the Design of Stiffened Composite Panels , 1994 .

[5]  R.P.L. Nijssen,et al.  Fatigue life prediction and strength degradation of wind turbine rotor blade composites , 2006 .

[6]  Anastasios P. Vassilopoulos,et al.  Complex stress state effect on fatigue life of GRP laminates. Part I, experimental , 2002 .

[7]  Efstratios F. Georgopoulos,et al.  Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials , 2008 .

[8]  Fernand Ellyin,et al.  Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae , 1994 .

[9]  A. A. Anastassopoulos,et al.  Damage characterization of carbon/carbon laminates using neural network techniques on AE signals , 1998 .

[10]  Adrião Duarte Dória Neto,et al.  Use of modular networks in the building of constant life diagrams , 2007 .

[11]  Pruettha Nanakorn,et al.  An adaptive penalty function in genetic algorithms for structural design optimization , 2001 .

[12]  Yousef Al-Assaf,et al.  FATIGUE LIFE PREDICTION OF COMPOSITE MATERIALS USING POLYNOMIAL CLASSIFIERS AND RECURRENT NEURAL NETWORKS , 2007 .

[13]  Philip Clausen,et al.  An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies , 2003 .

[14]  Adrião Duarte Dória Neto,et al.  BUILDING OF CONSTANT LIFE DIAGRAMS OF FATIGUE USING ARTIFICIAL NEURAL NETWORKS , 2005 .

[15]  Anastasios P. Vassilopoulos,et al.  Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates , 2008 .

[16]  Jung-Seok Kim,et al.  Development of a user-friendly expert system for composite laminate design , 2007 .

[17]  Kenan Genel,et al.  Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network , 2003 .

[18]  Woonbong Hwang,et al.  Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks , 1999 .

[19]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[20]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  J. Whitney,et al.  Fatigue Characterization of Composite Materials , 1979 .

[22]  Anastasios P. Vassilopoulos,et al.  Fatigue design allowables for GRP laminates based on stiffness degradation measurements , 2000 .

[23]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[24]  Darryl P Almond,et al.  The use of neural networks for the prediction of fatigue lives of composite materials , 1999 .

[25]  Gerard Franklyn Fernando,et al.  Fatigue life prediction for hybrid composites , 1989 .

[26]  Keith Worden,et al.  Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network , 2007 .

[27]  Julio F. Davalos,et al.  An artificial neural network for the fatigue study of bonded FRP–wood interfaces , 2006 .

[28]  Efstratios F. Georgopoulos,et al.  Genetic Programming in Modelling of Fatigue Life of Composite Materials , 2007 .

[29]  Efstratios F. Georgopoulos,et al.  Artificial neural networks in spectrum fatigue life prediction of composite materials , 2007 .

[30]  A. Lystrup,et al.  Fatigue of Materials and Components for Wind Turbine Rotor Blades , 1996 .

[31]  Efstratios F. Georgopoulos,et al.  Modelling Fatigue Life of Multidirectional GFRP Laminates under Constant Amplitude Loading with Artificial Neural Networks , 2006 .

[32]  Yousef Al-Assaf,et al.  Prediction of the fatigue life of unidirectional glass fiber/epoxy composite laminae using different neural network paradigms , 2002 .

[33]  T. Adam,et al.  Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading , 1994 .

[34]  John F. Mandell,et al.  DOE/MSU composite material fatigue database: Test methods, materials, and analysis , 1997 .

[35]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[36]  Wei Sha,et al.  Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks , 2007 .

[37]  A. Abedian,et al.  Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel , 2008 .

[38]  Yousef Al-Assaf,et al.  Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks , 2001 .

[39]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.