Breaking symmetries in graph search with canonizing sets

There are many complex combinatorial problems which involve searching for an undirected graph satisfying given constraints. Such problems are often highly challenging because of the large number of isomorphic representations of their solutions. This paper introduces effective and compact, complete symmetry breaking constraints for small graph search. Enumerating with these symmetry breaks generates all and only non-isomorphic solutions. For small search problems, with up to 10 vertices, we compute instance independent symmetry breaking constraints. For small search problems with a larger number of vertices we demonstrate the computation of instance dependent constraints which are complete. We illustrate the application of complete symmetry breaking constraints to extend two known sequences from the OEIS related to graph enumeration. We also demonstrate the application of a generalization of our approach to fully-interchangeable matrix search problems.

[1]  Fadi A. Aloul Symmetry in Boolean Satisfiability , 2010, Symmetry.

[2]  Paul Erdös,et al.  Highly irregular graphs , 1987, J. Graph Theory.

[3]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[4]  Peter J. Stuckey,et al.  Breaking Symmetries in Graph Representation , 2013, IJCAI.

[5]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[6]  Toby Walsh,et al.  Symmetry Breaking Constraints: Recent Results , 2012, AAAI.

[7]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[8]  Brendan D. McKay,et al.  R(4, 5) = 25 , 1995, J. Graph Theory.

[9]  Toby Walsh,et al.  Breaking Symmetry with Different Orderings , 2013, CP.

[10]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[11]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[12]  Igor L. Markov,et al.  Breaking instance-independent symmetries in exact graph coloring , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[13]  Igor L. Markov,et al.  Graph Symmetry Detection and Canonical Labeling: Differences and Synergies , 2012, Turing-100.

[14]  G. Brinkmann Fast generation of cubic graphs , 1996 .

[15]  Peter J. Stuckey,et al.  Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems , 2013, J. Artif. Intell. Res..

[16]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[17]  Peter J. Stuckey,et al.  Constraints for symmetry breaking in graph representation , 2018, Constraints.

[18]  Igor L. Markov,et al.  Efficient symmetry breaking for Boolean satisfiability , 2003, IEEE Transactions on Computers.

[19]  Ronald C. Read,et al.  A survey of graph generation techniques , 1981 .

[20]  S. Radziszowski Small Ramsey Numbers , 2011 .

[21]  Ofer Strichman,et al.  Theory and Applications of Satisfiability Testing – SAT 2010 , 2010, Lecture Notes in Computer Science.

[22]  Andrew Grayland,et al.  Snake Lex: An Alternative to Double Lex , 2009, CP.

[23]  Ian Miguel,et al.  Constraints for Breaking More Row and Column Symmetries , 2003, CP.

[24]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[25]  Toby Walsh,et al.  General Symmetry Breaking Constraints , 2006, CP.

[26]  Toby Walsh,et al.  Breaking Row and Column Symmetries in Matrix Models , 2002, CP.

[27]  Pascal Van Hentenryck,et al.  Symmetry Breaking via LexLeader Feasibility Checkers , 2011, IJCAI.

[29]  Eugene M. Luks,et al.  The Complexity of Symmetry-Breaking Formulas , 2004, Annals of Mathematics and Artificial Intelligence.

[30]  Igor L. Markov,et al.  Symmetry and Satisfiability: An Update , 2010, SAT.

[31]  Charles J. Colbourn,et al.  Cataloguing the graphs on 10 vertices , 1985, J. Graph Theory.

[32]  Ilya Shlyakhter,et al.  Generating effective symmetry-breaking predicates for search problems , 2001, Discrete Applied Mathematics.

[33]  Toby Walsh,et al.  On the Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry , 2010, CP.

[34]  Igor L. Markov,et al.  Conflict Anticipation in the Search for Graph Automorphisms , 2012, LPAR.

[35]  Jean-François Puget,et al.  On the Satisfiability of Symmetrical Constrained Satisfaction Problems , 1993, ISMIS.