Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments

[1]  Corinne Da Silva,et al.  Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean , 2022, Cell genomics.

[2]  Shenghui Li,et al.  Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome , 2022, Gut microbes.

[3]  Meng Li,et al.  Genomic insights into versatile lifestyle of three new bacterial candidate phyla , 2022, Science China Life Sciences.

[4]  Elise S. Cowley,et al.  METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks , 2021, Microbiome.

[5]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[6]  M. Kanehisa,et al.  KEGG mapping tools for uncovering hidden features in biological data , 2021, Protein science : a publication of the Protein Society.

[7]  Susumu Yoshizawa,et al.  The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments , 2021, Scientific Data.

[8]  Arianna I. Krinos,et al.  Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton , 2021, bioRxiv.

[9]  Zhi‐Feng Zhang,et al.  High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments , 2021, Applied and Environmental Microbiology.

[10]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[11]  Donovan H. Parks,et al.  A standardized archaeal taxonomy for the Genome Taxonomy Database , 2021, Nature Microbiology.

[12]  Zhi‐Feng Zhang,et al.  Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments , 2021, mSystems.

[13]  Jia Li,et al.  Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep , 2021, Genome Biology.

[14]  S. Rasmussen,et al.  Improved metagenome binning and assembly using deep variational autoencoders , 2021, Nature Biotechnology.

[15]  Jie Pan,et al.  Diversity, metabolism and cultivation of archaea in mangrove ecosystems , 2020, Marine Life Science & Technology.

[16]  Carmen Li,et al.  Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep , 2020, Nature Communications.

[17]  Zhili He,et al.  Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale , 2020, NPJ biofilms and microbiomes.

[18]  Zhili He,et al.  Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale , 2020, npj Biofilms and Microbiomes.

[19]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[20]  R. Meckenstock,et al.  Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. , 2020, FEMS microbiology ecology.

[21]  M. Li,et al.  Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments , 2020, Microbiome.

[22]  Donovan H. Parks,et al.  Roadmap for naming uncultivated Archaea and Bacteria , 2020, Nature Microbiology.

[23]  Donovan H. Parks,et al.  A complete domain-to-species taxonomy for Bacteria and Archaea , 2020, Nature Biotechnology.

[24]  Meng Li,et al.  Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota , 2020, Microbiome.

[25]  Meng Li,et al.  Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation , 2020, Science China Life Sciences.

[26]  Meng Li,et al.  Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation , 2020, Science China Life Sciences.

[27]  A. Bhatt,et al.  Complete, closed bacterial genomes from microbiomes using nanopore sequencing , 2020, Nature Biotechnology.

[28]  Yoko Sato,et al.  KEGG Mapper for inferring cellular functions from protein sequences , 2019, Protein science : a publication of the Protein Society.

[29]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[30]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[31]  M. F. Noronha,et al.  Exploring the genetic potential of a fosmid metagenomic library from an oil-impacted mangrove sediment for metabolism of aromatic compounds. , 2019, Ecotoxicology and environmental safety.

[32]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[33]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[34]  H. Klenk,et al.  Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies , 2019, Scientific Data.

[35]  M. Hattori,et al.  Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut , 2019, Microbiome.

[36]  Eli Levy Karin,et al.  MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics , 2019, Microbiome.

[37]  Manuel Porcar,et al.  Assembly methods for nanopore-based metagenomic sequencing: a comparative study , 2019, Scientific Reports.

[38]  Mick Watson,et al.  Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery , 2019, Nature Biotechnology.

[39]  Niranjan Nagarajan,et al.  Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes , 2019, Nature Biotechnology.

[40]  P. Pevzner,et al.  metaFlye: scalable long-read metagenome assembly using repeat graphs , 2019, Nature Methods.

[41]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[42]  Charles Y Chiu,et al.  Clinical metagenomics , 2019, Nature Reviews Genetics.

[43]  P. Hugenholtz,et al.  Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments , 2019, Nature Microbiology.

[44]  Martin Ayling,et al.  New approaches for metagenome assembly with short reads , 2019, Briefings Bioinform..

[45]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[46]  Donovan H. Parks,et al.  The importance of designating type material for uncultured taxa. , 2019, Systematic and applied microbiology.

[47]  C. Ahrens,et al.  Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system , 2018, BMC Microbiology.

[48]  Zhili He,et al.  Mangrove Sediment Microbiome: Adaptive Microbial Assemblages and Their Routed Biogeochemical Processes in Yunxiao Mangrove National Nature Reserve, China , 2018, Microbial Ecology.

[49]  M. Li,et al.  Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. , 2018, FEMS microbiology reviews.

[50]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[51]  Changsheng Li,et al.  Genome-centric view of carbon processing in thawing permafrost , 2018, Nature.

[52]  Joerg Graf,et al.  Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing , 2018, BMC Genomics.

[53]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[54]  B. Woodcroft,et al.  GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes , 2018, Nucleic acids research.

[55]  Elaina D. Graham,et al.  Potential for primary productivity in a globally-distributed bacterial phototroph , 2018, The ISME Journal.

[56]  M. Shi,et al.  Using Metagenomics to Characterize an Expanding Virosphere , 2018, Cell.

[57]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[58]  J. Banfield,et al.  Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle , 2018, The ISME Journal.

[59]  B. Baker,et al.  Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota , 2018, The ISME Journal.

[60]  S. Gribaldo,et al.  Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes , 2018, Proceedings of the National Academy of Sciences.

[61]  Neil D. Rawlings,et al.  The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database , 2017, Nucleic Acids Res..

[62]  Austin G. Davis-Richardson,et al.  Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation , 2017, Nature Biotechnology.

[63]  M. Marcos,et al.  Tide as Steering Factor in Structuring Archaeal and Bacterial Ammonia-Oxidizing Communities in Mangrove Forest Soils Dominated by Avicennia germinans and Rhizophora mangle , 2017, Microbial Ecology.

[64]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[65]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[66]  Christian von Mering,et al.  MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis , 2017, Bioinform..

[67]  C. Pirovani,et al.  Metagenomic alkaline protease from mangrove sediment , 2017, Journal of basic microbiology.

[68]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[69]  Brian C. Thomas,et al.  Genome-reconstruction for eukaryotes from complex natural microbial communities , 2017, bioRxiv.

[70]  C. Freeman,et al.  Decomposition as a regulator of carbon accretion in mangroves: a review , 2017 .

[71]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[72]  R. Amann,et al.  Uncultivated microbes in need of their own taxonomy , 2017, The ISME Journal.

[73]  Philip D. Blood,et al.  Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software , 2017, Nature Methods.

[74]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[75]  Andrew J. Davison,et al.  Consensus statement: Virus taxonomy in the age of metagenomics , 2017, Nature Reviews Microbiology.

[76]  Dan Søndergaard,et al.  HydDB: A web tool for hydrogenase classification and analysis , 2016, Scientific Reports.

[77]  James G. Baldwin-Brown,et al.  Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage , 2016, bioRxiv.

[78]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[79]  David S. Wishart,et al.  Heatmapper: web-enabled heat mapping for all , 2016, Nucleic Acids Res..

[80]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[81]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[82]  Blake A. Simmons,et al.  MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets , 2016, Bioinform..

[83]  J. Korlach,et al.  Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing , 2016, mBio.

[84]  Vladimir B. Bajic,et al.  Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. , 2016, Gene.

[85]  L. Pritchard,et al.  Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens , 2016 .

[86]  P. Nielsen,et al.  Complete nitrification by a single microorganism , 2015, Nature.

[87]  C. Jackson,et al.  Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival , 2015, The ISME Journal.

[88]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[89]  B. Baker,et al.  Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria , 2015, Microbiome.

[90]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[91]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[92]  Itai Sharon,et al.  Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer , 2014, The ISME Journal.

[93]  Konstantinos T. Konstantinidis,et al.  MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences , 2014, Nucleic acids research.

[94]  D. Alongi Carbon cycling and storage in mangrove forests. , 2014, Annual review of marine science.

[95]  Jun Meng,et al.  Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses , 2013, The ISME Journal.

[96]  B. Jørgensen,et al.  Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi , 2013, The ISME Journal.

[97]  Brian C. Thomas,et al.  Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling , 2013, Microbiome.

[98]  Erin Beck,et al.  TIGRFAMs and Genome Properties in 2013 , 2012, Nucleic Acids Res..

[99]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[100]  R. Gunsalus,et al.  Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. , 2012, Annual review of microbiology.

[101]  Diego A. A. Chaves,et al.  The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics , 2012, PloS one.

[102]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[103]  J. Gescher,et al.  Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration , 2011, Applied and Environmental Microbiology.

[104]  G. Fuchs Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? , 2011, Annual review of microbiology.

[105]  Katrina J. Edwards,et al.  Microbial Ecology of the Dark Ocean above, at, and below the Seafloor , 2011, Microbiology and Molecular Reviews.

[106]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[107]  M. Kanninen,et al.  Mangroves among the most carbon-rich forests in the tropics , 2011 .

[108]  R. Delaune,et al.  Fungal and bacterial mediated denitrification in wetlands: influence of sediment redox condition. , 2010, Water research.

[109]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[110]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[111]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[112]  A. Pol,et al.  Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. , 2009, FEMS microbiology letters.

[113]  S. Ragsdale,et al.  Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. , 2008, Biochimica et biophysica acta.

[114]  M. Jetten The microbial nitrogen cycle. , 2008, Environmental microbiology.

[115]  N. Dubilier,et al.  Symbiotic diversity in marine animals: the art of harnessing chemosynthesis , 2008, Nature Reviews Microbiology.

[116]  Andrew H. Paterson,et al.  Synteny and Collinearity in Plant Genomes , 2008, Science.

[117]  S. Ragsdale Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis , 2008, Annals of the New York Academy of Sciences.

[118]  I. Andersson Catalysis and regulation in Rubisco. , 2007, Journal of experimental botany.

[119]  S. Sievert,et al.  Evidence for Autotrophic CO2 Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria , 2005, Journal of bacteriology.

[120]  J. Handelsman Metagenomics: Application of Genomics to Uncultured Microorganisms , 2004, Microbiology and Molecular Biology Reviews.

[121]  D. Kahn,et al.  Genetic regulation of biological nitrogen fixation , 2004, Nature Reviews Microbiology.

[122]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[123]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[124]  G. Holguin,et al.  The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview , 2001, Biology and Fertility of Soils.

[125]  D. Lovley,et al.  Novel forms of anaerobic respiration of environmental relevance. , 2000, Current opinion in microbiology.

[126]  S. Wakeham,et al.  Molecular indicators of diagenetic status in marine organic matter , 1997 .

[127]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[128]  R. Prakasham,et al.  Bacterial Metabolism–Coupled Energetics , 2019, Microbial Electrochemical Technology.

[129]  A. Segura,et al.  Pathways for the Degradation of Fatty Acids in Bacteria , 2019, Aerobic Utilization of Hydrocarbons, Oils, and Lipids.

[130]  S. Raghukumar Fungi in Coastal and Oceanic Marine Ecosystems , 2017 .

[131]  Ashbindu Singh,et al.  Status and distribution of mangrove forests of the world using earth observation satellite data , 2011 .

[132]  P. Hugenholtz,et al.  Microbiology: Metagenomics , 2008, Nature.

[133]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[134]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[135]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[136]  W. Meijer,et al.  Something from almost nothing: carbon dioxide fixation in chemoautotrophs. , 1998, Annual review of microbiology.

[137]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .