Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance

Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m.

[1]  Rodolphe Devillers,et al.  Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? , 2015 .

[2]  J. Murillo,et al.  Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic) , 2014, Scientific Reports.

[3]  Peter T. Harris,et al.  Geomorphology of the oceans , 2014 .

[4]  Jaime S. Davies,et al.  Special Issue: Towards a new and integrated approach to submarine canyon research , 2014 .

[5]  Christopher Kelley,et al.  Seamount benthos in a cobalt‐rich crust region of the central Pacific: conservation challenges for future seabed mining , 2014 .

[6]  Gerald H. Taranto,et al.  A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework , 2014 .

[7]  J. Roberts,et al.  Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic , 2014, Scientific Reports.

[8]  Colin R. Janssen,et al.  Microplastic pollution in deep-sea sediments. , 2013, Environmental pollution.

[9]  V. Huvenne,et al.  Tidal downwelling and implications for the carbon biogeochemistry of cold‐water corals in relation to future ocean acidification and warming , 2013, Global change biology.

[10]  A. Jamieson,et al.  The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean , 2013 .

[11]  R. Thresher,et al.  Movement of deep-sea coral populations on climatic timescales , 2013 .

[12]  Peter I. Miller,et al.  Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity? , 2013, PloS one.

[13]  Raymond R. Wilson,et al.  Seamount Biota and Biogeography , 2013 .

[14]  Christopher R. German,et al.  On the Global Distribution of Hydrothermal Vent Fields , 2012 .

[15]  Sean C. Anderson,et al.  Extinctions in ancient and modern seas. , 2012, Trends in ecology & evolution.

[16]  M. Wisshak,et al.  Ocean Acidification Accelerates Reef Bioerosion , 2012, PloS one.

[17]  Gerald H. Taranto,et al.  An Ecosystem Evaluation Framework for Global Seamount Conservation and Management , 2012, PloS one.

[18]  D. Tittensor,et al.  Global habitat suitability of cold‐water octocorals , 2012 .

[19]  M. Taviani,et al.  Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea , 2012 .

[20]  M. Clark,et al.  Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation , 2012, Environmental Conservation.

[21]  I. Ekeland,et al.  Sustainability of deep-sea fisheries , 2012 .

[22]  U. Riebesell,et al.  Acclimation to ocean acidification during long‐term CO2 exposure in the cold‐water coral Lophelia pertusa , 2012 .

[23]  R. Thresher,et al.  Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos , 2011 .

[24]  R. Goericke,et al.  Impact of declining intermediate-water oxygen on deepwater fishes in the California Current , 2011 .

[25]  P. Tyler,et al.  Man and the Last Great Wilderness: Human Impact on the Deep Sea , 2011, PloS one.

[26]  P. Harris,et al.  Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins , 2011 .

[27]  S. Samadi,et al.  Molluskan species richness and endemism on New Caledonian seamounts : are they enhanced compared to adjacent slopes ? , 2011 .

[28]  A. Rogers,et al.  The global distribution of seamounts based on 30 arc seconds bathymetry data , 2011 .

[29]  A. Rowden,et al.  Life on Seamounts , 2010 .

[30]  I. Priede,et al.  Biodiversity patterns and processes on the mid-Atlantic ridge , 2010 .

[31]  L. Levin,et al.  New Perceptions of Continental Margin Biodiversity , 2010 .

[32]  Roberto Danovaro,et al.  Deep, diverse and definitely different: unique attributes of the world's largest ecosystem , 2010 .

[33]  A. Rowden,et al.  Submarine canyons: hotspots of benthic biomass and productivity in the deep sea , 2010, Proceedings of the Royal Society B: Biological Sciences.

[34]  Thomas J. Webb,et al.  Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean , 2010, PloS one.

[35]  Kerry L. Howell,et al.  Mounting evidence: near-slope seamounts are faunally indistinct from an adjacent bank , 2010 .

[36]  P. Bagley,et al.  A Large Aggregation of Liparids at 7703 meters and a Reappraisal of the Abundance and Diversity of Hadal Fish , 2010 .

[37]  G. Menezes,et al.  Are deep-sea demersal fish assemblages globally homogenous? Insights from seamounts , 2010 .

[38]  Rudy J. Kloser,et al.  Seamount megabenthic assemblages fail to recover from trawling impacts. , 2010 .

[39]  D. Pauly,et al.  Subsidies to high seas bottom trawl fleets and the sustainability of deep-sea demersal fish stocks , 2010 .

[40]  L. Levin,et al.  Ocean oxygen minima expansions and their biological impacts , 2010 .

[41]  T. C. Shirley,et al.  HOW LARGE IS THE SEAMOUNT BIOME , 2010 .

[42]  Martin Solan,et al.  Hadal trenches: the ecology of the deepest places on Earth. , 2010, Trends in ecology & evolution.

[43]  C. Smith,et al.  Hawaiian hotspots: enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii , 2010 .

[44]  D. Sandwell,et al.  The Global Seamount Census , 2010 .

[45]  Francis Neat,et al.  Stable abundance, but changing size structure in grenadier fishes (Macrouridae) over a decade (1998–2008) in which deepwater fisheries became regulated , 2010 .

[46]  Rudy J. Kloser,et al.  Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting , 2009 .

[47]  L. Levin,et al.  Living Deep: A Synopsis of Hadal Trench Ecology , 2009 .

[48]  M. Clark Deep-sea seamount fisheries: a review of global status and future prospects , 2009 .

[49]  Malcolm R. Clark,et al.  Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand , 2009 .

[50]  J. Gattuso,et al.  Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH , 2009 .

[51]  P. Bagley,et al.  Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour , 2009, Proceedings of the Royal Society B: Biological Sciences.

[52]  R. Haedrich,et al.  Deep-sea fishes in Canada’s Atlantic: population declines and predicted recovery times , 2009, Environmental Biology of Fishes.

[53]  T. Pitcher,et al.  Estimating the Worldwide Extent of Illegal Fishing , 2009, PloS one.

[54]  S. Olsen,et al.  Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels , 2009 .

[55]  L. Lundsten,et al.  Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount , 2009, PloS one.

[56]  F. Chavez,et al.  Oxygen declines and the shoaling of the hypoxic boundary in the California Current , 2008 .

[57]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[58]  M. Clark,et al.  Large‐Scale Distant‐Water Trawl Fisheries on Seamounts , 2008 .

[59]  R. Watson,et al.  Catches from world seamount fisheries , 2008 .

[60]  M. Clark,et al.  Impacts of Fisheries on Seamounts , 2008 .

[61]  H. Silva,et al.  Small‐Scale Fishing on Seamounts , 2008 .

[62]  A. Rogers,et al.  Corals on seamounts , 2008 .

[63]  J. Arístegui,et al.  Physical Processes and Seamount Productivity , 2008 .

[64]  Howard J. Freeland,et al.  Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific , 2007 .

[65]  A. Kafanov On the book “Biogeografiya podvodnykh gor Severnoi Atlantiki” (Biogeography of the North Atlantic Seamounts) , 2007, Russian Journal of Marine Biology.

[66]  M. Boisselier,et al.  Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates , 2006 .

[67]  S. Cairns,et al.  Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? , 2006 .

[68]  Jennifer A. Devine,et al.  Fisheries: Deep-sea fishes qualify as endangered , 2006, Nature.

[69]  A. Hirst,et al.  Long‐term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming , 2003 .

[70]  C. Hammer,et al.  Deep-water fisheries of the Northeast Atlantic: II Assessment and management approaches , 2003 .

[71]  P. Rona Resources of the Sea Floor , 2003, Science.

[72]  Alan Williams,et al.  Seamount benthic macrofauna off southern tasmania: community structure and impacts of trawling , 2001 .

[73]  J. Koslow,et al.  Diversity and endemism of the benthic seamount fauna in the southwest Pacific , 2000, Nature.

[74]  Pascal Lorance,et al.  Continental slope and deep-sea fisheries: implications for a fragile ecosystem , 2000 .

[75]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[76]  Shin Takahashi,et al.  Butyltin Residues in Deep-Sea Organisms Collected from Suruga Bay, Japan , 1997 .

[77]  J. A. Koslow,et al.  SEAMOUNTS AND THE ECOLOGY OF DEEP-SEA FISHERIES , 1997 .

[78]  J. Koslow Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish , 1996 .

[79]  L. Levin,et al.  Involvement of the oxygen minimum in benthic zonation on a deep seamount , 1990, Nature.

[80]  Kenneth L. Smith,et al.  Megafauna associated with bathyal seamounts in the central North Pacific Ocean , 1985 .

[81]  M. Angel Ocean trench conservation , 1982 .

[82]  C. Clark The Economics of Overexploitation , 1973, Science.

[83]  ANTON FR. BRUUN,et al.  The Abyssal Fauna: Its Ecology, Distribution and Origin , 1956, Nature.

[84]  M. Roberts,et al.  Benthic invertebrates in a high CO2 world , 2012 .

[85]  P. Auster,et al.  Definition and detection of vulnerable marine ecosystems on the high seas: problems with the “move-on” rule , 2011 .

[86]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[87]  Timothy M Shank,et al.  The ecology of seamounts: structure, function, and human impacts. , 2010, Annual review of marine science.

[88]  I. Priede,et al.  Towards improved understanding of the diversity and abundance patterns of the mid-ocean ridge macro- and megafauna , 2008 .

[89]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[90]  H. Thiel,et al.  Anthropogenic impacts on the deep sea , 2003 .

[91]  K. N. Nesis,et al.  Biology of the Nazca and Sala y Gòmez Submarine Ridges, an Outpost of the Indo-West Pacific Fauna in the Eastern Pacific Ocean: Composition and Distribution of the Fauna, its Communities and History , 1997 .

[92]  N. G. Vinogradova Zoogeography of the Abyssal and Hadal Zones , 1997 .

[93]  S. Lisovsky,et al.  Russian (USSR) Fisheries Research in Deep Waters (Below 500 m.) in the North Atlantic , 1995 .

[94]  J. Koslow,et al.  The mid-slope demersal fish community off southeastern Australia , 1994 .

[95]  A. Rogers The Biology of Seamounts , 1994 .

[96]  Peter Brueggeman,et al.  Deep Sea Ocean Trenches and their Fauna , 1989 .

[97]  G. Deacon,et al.  Submarine Geology , 1960, Nature.

[98]  Mariana Arc,et al.  a seamount Mineral Deposits a source of rare Metals for high-techNology iNDustries , 2022 .