Homogenization of viscoplastic constitutive laws within a phase field approach

Abstract The present work provides an original consistent framework for combining different constitutive laws, possibly nonlinear, within diffuse interface models (phase field) by homogenization rather than by mixing the material parameters, such as to offer a greater flexibility. The framework relies on the choice of relevant thermodynamic potentials such that the homogenization schemes are natural choices in the thermodynamic formulation. Thus, it justifies previously proposed classic schemes ( Ammar et al., 2009b ) and gives clues to explore new schemes ( Durga et al., 2013 , Mosler et al., 2014 ) by defining relevant potentials. The proposed framework is illustrated by addressing two issues. First, Reuss and Voigt homogenization schemes are shown to deliver the same kinetics of diffusion-controlled transformations in the pure elastic case in the limit of vanishing diffuse interface width. Second, using the Voigt homogenization scheme, we demonstrate that the influence of viscoplasticity, either isotropic or crystalline, on diffusion-controlled transformations is non-trivial and cannot be inferred from simple qualitative arguments. Depending on the competition between the time scales of diffusion and viscoplasticity, the growth kinetics may exhibit intermediate behaviors between purely chemical and elastic cases. Moreover, it is shown how viscoplasticity can change the morphological stability of growing circular precipitates.

[1]  S. Shi,et al.  Elastoplastic phase field model for microstructure evolution , 2005 .

[2]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[3]  S. Quilici,et al.  Numerical Modeling of Fatigue Crack Growth in Single Crystals Based on Microdamage Theory , 2011 .

[4]  H. Müller-Krumbhaar,et al.  Phase-field models for moving boundary problems: Controlling metastability and anisotropy , 1995 .

[5]  J. Teixeira,et al.  Investigation of the growth kinetics of γ → α in Fe–C–X alloys with a thick interface model , 2014 .

[6]  Thermodynamics of mixtures and phase field theory , 2001 .

[7]  A. Finel,et al.  Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys , 2010 .

[8]  I. Steinbach,et al.  The multiphase-field model with an integrated concept for modelling solute diffusion , 1998 .

[9]  Toshio Suzuki,et al.  Phase-field model for binary alloys. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[11]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[12]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[13]  Nicolas Cordero,et al.  Micromorphic approach to single crystal plasticity and damage , 2011 .

[14]  S. Forest,et al.  The Micromorphic versus Phase Field Approach to Gradient Plasticity and Damage with Application to Cracking in Metal Single Crystals , 2011 .

[15]  C. Kuhn,et al.  Crystal Plasticity and Martensitic Transformations - A Phase Field Approach , 2014 .

[16]  B. Markert Advances in Extended and Multifield Theories for Continua , 2011 .

[17]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[18]  B. Eidel,et al.  Driving forces for interface kinetics and phase field models , 2013 .

[19]  M. Geers,et al.  Phase field dependent viscoplastic behaviour of solder alloys , 2005 .

[20]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[21]  M. Plapp Unified derivation of phase-field models for alloy solidification from a grand-potential functional. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Cv Clemens Verhoosel,et al.  Phase-field models for brittle and cohesive fracture , 2014 .

[23]  Mats Hillert,et al.  Solute drag, solute trapping and diffusional dissipation of Gibbs energy 1 1 This paper is based on , 1999 .

[24]  W. C. Johnson On the inapplicability of gibbs phase rule to coherent solids , 1987 .

[25]  T. Takaki,et al.  Elastoplastic phase-field simulation of self- and plastic accommodations in Cubic→tetragonalCubic→tetragonal martensitic transformation , 2008 .

[26]  E. Aeby-Gautier,et al.  Modelling of phase transformation kinetics in Ti alloys – Isothermal treatments , 2005 .

[27]  Christian Miehe,et al.  A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns , 2013 .

[28]  B. Appolaire,et al.  Investigation of coherency loss by prismatic punching with a nonlinear elastic model , 2014 .

[29]  George Z. Voyiadjis,et al.  Nonlocal damage model using the phase field method: Theory and applications , 2013 .

[30]  A. Karma,et al.  Phase Field Methods , 2014 .

[31]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[32]  W. C. Johnson,et al.  Interfacial Stress, Interfacial Energy, and Phase Equilibria in Binary Alloys , 1999 .

[33]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[34]  M. Kazeminezhad Modeling of austenite to ferrite transformation , 2012, Bulletin of Materials Science.

[35]  A. Deschamps,et al.  The interaction of plasticity and diffusion controlled precipitation reactions , 2003 .

[36]  Yunzhi Wang,et al.  Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap , 1993 .

[37]  R. Sekerka,et al.  The effect of elastic fields on the morphological stability of a precipitate grown from solid solution , 1989 .

[38]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[39]  Markus Apel,et al.  Multi phase field model for solid state transformation with elastic strain , 2006 .

[40]  K. Hackl,et al.  Plasticity and Beyond , 2014 .

[41]  S. Forest,et al.  Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation , 2012 .

[42]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[43]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[44]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[45]  Georges Cailletaud,et al.  Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media , 2009 .

[46]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[47]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[48]  I. Steinbach Phase-field models in materials science , 2009 .

[49]  Benoît Appolaire,et al.  Non-coherent interfaces in diffuse interface models , 2010 .

[50]  Frédéric Feyel,et al.  Finite element formulation of a phase field model based on the concept of generalized stresses , 2009 .

[51]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[52]  Mgd Marc Geers,et al.  A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium , 2014 .

[53]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[54]  G. Cailletaud,et al.  Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate , 2011 .

[55]  S. Forest,et al.  A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys , 2012 .

[56]  Gerard A. Maugin The Thermomechanics of Nonlinear Irreversible Behaviours , 1999 .

[57]  S. Forest,et al.  Crack growth modelling in single crystals based on higher order continua , 2009 .

[58]  J. Iwan D. Alexander,et al.  Interfacial conditions for thermomechanical equilibrium in two‐phase crystals , 1986 .

[59]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[60]  S. Forest,et al.  Micromorphic approach to crystal plasticity and phase transformation , 2014 .

[61]  N. Ohno,et al.  Elasto-plastic simulation of stress evolution during grain growth using a phase field model , 2007 .

[62]  I. Qamar,et al.  Dendritic morphology observed in the solid-state precipitation in binary alloys , 1999 .

[63]  Wolfgang H. Müller,et al.  A study of the coarsening in tin/lead solders , 2000 .

[64]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[65]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[66]  J. Cahn,et al.  A simple model for coherent equilibrium , 1984 .

[67]  Y. Mishin,et al.  Thermodynamics of coherent interfaces under mechanical stresses. I. Theory , 2012, 1304.0144.

[68]  B. Appolaire,et al.  Plastic relaxation during diffusion-controlled growth of Widmanstätten plates , 2015 .

[69]  Robert J. Asaro,et al.  Mechanics of Solids and Materials , 2006 .

[70]  Georges Cailletaud,et al.  On the selection of active slip systems in crystal plasticity , 2005 .

[71]  B. Appolaire,et al.  Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: Application to recrystallisation , 2012 .

[72]  Kais Ammar,et al.  Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method , 2014, Meccanica.

[73]  Christian Miehe,et al.  Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation , 2012, International Journal of Fracture.

[74]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[75]  Jörn Mosler,et al.  A novel homogenization method for phase field approaches based on partial rank-one relaxation , 2014 .

[76]  S. Forest,et al.  Micromorphic vs. Phase-Field Approaches for Gradient Viscoplasticity and Phase Transformations , 2011 .

[77]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[78]  Y. L. Bouar,et al.  Phase field methods: Microstructures, mechanical properties and complexity , 2010 .

[79]  A. Bakker Mechanical Behaviour of Materials , 1995 .