Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities

[1]  I. Chorkendorff,et al.  Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles , 2016 .

[2]  K. A. Friedrich,et al.  Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers , 2016 .

[3]  T. Morawietz,et al.  Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers. , 2016, Physical chemistry chemical physics : PCCP.

[4]  K. Friedrich,et al.  Nanosized IrO(x)-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure. , 2016, Angewandte Chemie.

[5]  Ib Chorkendorff,et al.  Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti‐Stabilized MnO2 , 2015 .

[6]  R. Schlögl,et al.  Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER). , 2015, Journal of the American Chemical Society.

[7]  Kazuharu Suzuki,et al.  An IrSi oxide film as a highly active water-oxidation catalyst in acidic media. , 2015, Chemical communications.

[8]  R. Kraehnert,et al.  Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships. , 2015, ChemSusChem.

[9]  Peter Strasser,et al.  Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00518c Click here for additional data file. , 2015, Chemical science.

[10]  M. Willinger,et al.  Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. , 2015, Angewandte Chemie.

[11]  A. Aricò,et al.  Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers , 2015 .

[12]  André Sternberg,et al.  Power-to-What? : Environmental assessment of energy storage systems , 2015 .

[13]  I. Chorkendorff,et al.  Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02685c Click here for additional data file. , 2014, Chemical science.

[14]  Thomas Pregger,et al.  Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck , 2015 .

[15]  C. Kang,et al.  Fabrication of titanium bipolar plates by rubber forming and performance of single cell using TiN-coated titanium bipolar plates , 2014 .

[16]  D. Bessarabov,et al.  Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning , 2014 .

[17]  Zhigang Shao,et al.  Investigations on degradation of the long-term proton exchange membrane water electrolysis stack , 2014 .

[18]  Aleksandar R. Zeradjanin,et al.  Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment , 2014 .

[19]  Kevin Harrison,et al.  Novel Electrolyzer Applications: Providing More Than Just Hydrogen , 2014 .

[20]  Asif Ansar,et al.  Low Cost Bipolar Plates for Large Scale PEM Electrolyzers , 2014 .

[21]  Nemanja Danilovic,et al.  Activity-Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments. , 2014, The journal of physical chemistry letters.

[22]  Lin Gan,et al.  IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting , 2014 .

[23]  Pierre Millet,et al.  Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells , 2014 .

[24]  K. Andreas Friedrich,et al.  Influence of the Distribution of Platinum Deposits on the Properties and Degradation of Platinum-Impregnated Nafion Membranes , 2014 .

[25]  K. Andreas Friedrich,et al.  Influence of Platinum Precipitation On Properties and Degradation of Nafion® Membranes , 2013 .

[26]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[27]  S. Grigoriev,et al.  Cell failure mechanisms in PEM water electrolyzers , 2012 .

[28]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[29]  K. Ayers,et al.  Hydrogen Infrastructure Challenges and Solutions , 2012 .

[30]  K. Ayers,et al.  Recent Advances in Cell Cost and Efficiency for PEM-Based Water Electrolysis , 2012 .

[31]  Tetsuya Yoshida,et al.  Experimentalstudy on porouscurrentcollectors of PEMelectrolyzers , 2012 .

[32]  Carmen M. Rangel,et al.  Characterization of MEA degradation for an open air cathode PEM fuel cell , 2012 .

[33]  N. Briguglio,et al.  An electrochemical study of a PEM stack for water electrolysis , 2012 .

[34]  V. V. Lopes,et al.  Assessing cell polarity reversal degradation phenomena in PEM fuel cells by electrochemical impedance spectroscopy , 2011 .

[35]  S. Grigoriev,et al.  High-pressure PEM water electrolysis and corresponding safety issues , 2011 .

[36]  W. Liu,et al.  Chemical and mechanical membrane degradation , 2010 .

[37]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[38]  Huamin Zhang,et al.  Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis , 2009 .

[39]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[40]  K. Karan,et al.  Investigation of Charge-Transfer and Mass-Transport Resistances in PEMFCs with Microporous Layer Using Electrochemical Impedance Spectroscopy , 2009 .

[41]  John W. Weidner,et al.  Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode Effect of Humidity and Temperature , 2020, 2002.09476.

[42]  F. de Bruijn,et al.  Review: Durability and Degradation Issues of PEM Fuel Cell Components , 2008 .

[43]  Frédéric Maillard,et al.  Membrane and Active Layer Degradation upon PEMFC Steady-State Operation I. Platinum Dissolution and Redistribution within the MEA , 2007 .

[44]  A. Marshall,et al.  Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis , 2007 .

[45]  A. Laconti,et al.  Polymer Electrolyte Membrane Degradation Mechanisms in Fuel Cells - Findings Over the Past 30 Years and Comparison with Electrolyzers , 2006 .

[46]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[47]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[48]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[49]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[50]  A. Kornyshev,et al.  Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[51]  G. Scherer,et al.  PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants , 1998 .

[52]  Peter Urban,et al.  Characterization of direct methanol fuel cells by ac impedance spectroscopy , 1998 .

[53]  H. Urushibata,et al.  Effect of operational potential on performance decay rate in a phosphoric acid fuel cell , 1996 .

[54]  T. Murahashi,et al.  Change of Pt Distribution in the Active Components of Phosphoric Acid Fuel Cell , 1988 .