Compatibilization level effects on the structure and mechanical properties of rubber‐modified polyamide‐6/clay nanocomposites

Exfoliated polyamide-6 (PA6)/organically modified montmorillonite clay (OMMT) nanocomposites (PNs) were modified with partially maleinized styrene–ethylene/butadiene–styrene triblock copolymers (SEBS) at three maleinization levels in an attempt to link in these materials high toughness with appropriate small-strain and fracture tensile properties. OMMT stayed only in the PA6 matrix, and no preferential location in the matrix/rubber interphase was observed. The increased dispersed phase size upon the addition of OMMT was attributed to interactions between maleic anhydride (MA) functionalized SEBS and the surfactant of OMMT. The rubber particle size generally decreased when the MA content of SEBS increased, and this indicated compatibilization. The subsequent good adhesion led to tough nanocomposites across a wide range of both strain rates and fracture modes. As the critical interparticle distance (τc) decreased with the MA content, and the other parameters that could influence the surface-to-surface mean interparticle distance did not change, it is proposed that in these PNs higher adhesion leads to a smaller τc value. Finally, the presence in the matrix of a nanostructured clay makes the rubber content necessary for the toughness jump to increase and τc to decrease. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3611–3620, 2005

[1]  Yongjin Li,et al.  Co‐continuous Polyamide 6 (PA6)/Acrylonitrile‐Butadiene‐Styrene (ABS) Nanocomposites , 2005 .

[2]  I. Kelnar,et al.  Polyamide nanocomposites with improved toughness , 2005 .

[3]  J. Eguiazábal,et al.  Exfoliated PA6,6 nanocomposites by modification with PA6 , 2005 .

[4]  Sie Chin Tjong,et al.  Impact fracture toughness of polyamide‐6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer , 2005 .

[5]  J. Eguiazábal,et al.  Supertoughness in Polysulfone/Poly(ethylene‐octene) Blends , 2005 .

[6]  D. R. Paul,et al.  Comparison of nanocomposites based on nylon 6 and nylon 66 , 2004 .

[7]  S. Im,et al.  Poly(trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology (I) , 2004 .

[8]  Marco Zanetti,et al.  Thermal degradation behaviour of PE/clay nanocomposites , 2004 .

[9]  Tianxi Liu,et al.  Effect of moisture on the dynamic mechanical relaxation of polyamide‐6/clay nanocomposites , 2004 .

[10]  Xiao Hu,et al.  Effects of annealing (solid and melt) on the time evolution of polymorphic structure of PA6/silicate nanocomposites , 2004 .

[11]  R. K. Shah,et al.  Nylon 6 nanocomposites prepared by a melt mixing masterbatch process , 2004 .

[12]  T. D. Fornes,et al.  Effect of sodium montmorillonite source on nylon 6/clay nanocomposites , 2004 .

[13]  Y. Joo,et al.  Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers , 2004 .

[14]  Takashi Kashiwagi,et al.  Flame retardant mechanism of polyamide 6–clay nanocomposites ☆ , 2004 .

[15]  J. Nazábal,et al.  Compatibilization of a poly(butylene terephthalate)/poly(ethylene octene) copolymer blends with different amounts of an epoxy resin , 2004 .

[16]  T. D. Fornes,et al.  Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites , 2003 .

[17]  T. D. Fornes,et al.  Crystallization behavior of nylon 6 nanocomposites , 2003 .

[18]  A. Morgan,et al.  Effects of organoclay Soxhlet extraction on mechanical properties, flammability properties and organoclay dispersion of polypropylene nanocomposites , 2003 .

[19]  V. Altstädt,et al.  Effect of Sample Thickness on the Mechanical Properties of Injection-molded Polyamide-6 and Polyamide-6 Clay Nanocomposites , 2003 .

[20]  Tianxi Liu,et al.  Thermal degradation behavior of polyamide 6/clay nanocomposites , 2003 .

[21]  J. Nazábal,et al.  Stiffer and super-tough poly(butylene terephthalate) based blends by modification with phenoxy and maleated poly(ethylene–octene) copolymers , 2003 .

[22]  Tzong‐Ming Wu,et al.  Polymorphic behavior of nylon 6/saponite and nylon 6/montmorillonite nanocomposites , 2002 .

[23]  C. Nah,et al.  Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites , 2002 .

[24]  R. Prud’homme,et al.  DSC and DMTA characterization of ternary blends , 2002 .

[25]  Xiao-hui Liu,et al.  Phase transition in nylon 6/clay nanocomposites on annealing , 2002 .

[26]  K. Palanivelu,et al.  Studies on thermoplastic polyurethane toughened poly(butylene terephthalate) blends , 2002 .

[27]  Donald R Paul,et al.  Effect of organoclay structure on nylon 6 nanocomposite morphology and properties , 2002 .

[28]  T. D. Fornes,et al.  Nylon 6 nanocomposites: the effect of matrix molecular weight , 2001 .

[29]  T. Kotaka,et al.  A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites , 2001 .

[30]  J. Nazábal,et al.  Toughened poly(butylene terephthalate) by blending with a metallocenic poly(ethylene–octene) copolymer , 2001 .

[31]  Jin-Kook Lee,et al.  Preparation and Characterization of Poly(butyleneterephthalate)/Organoclay Nanocomposites , 2001 .

[32]  H. Lindberg,et al.  Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure , 2001 .

[33]  C. Choy,et al.  Effects of interfacial adhesion on the rubber toughening of poly(vinyl chloride) Part 1. Impact tests , 2001 .

[34]  R. Li,et al.  Brittle–tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed , 2000 .

[35]  P. Russo,et al.  Thermal and mechanical characterisation of films from Nylon 6/EVOH blends , 1999 .

[36]  L. Pessan,et al.  Crystallization behavior of PBT/ABS polymer blends , 1999 .

[37]  Haojun Liang,et al.  Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and temperature , 1998 .

[38]  D. R. Paul,et al.  Impact modification of poly(butylene terephthalate) by ABS materials , 1997 .

[39]  Chuh‐Yung Chen,et al.  Effects of reactive functional groups in the compatibilizer on mechanical properties of compatibilized blends , 1994 .

[40]  D. R. Paul,et al.  Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6 , 1992 .

[41]  J. W. Barlow,et al.  Reactive compatibilization of blends of nylon 6 and ABS materials , 1991 .

[42]  Souheng Wu Phase structure and adhesion in polymer blends: a criterion for rubber toughening , 1985 .