평가의 시간 순서를 고려한 강화 학습 기반 협력적 여과

최근 사용자의 흥미에 맞는 아이템이나 서비스를 추천해 주는 추천 시스템에 대한 관심이 높아지고 있다. 최근 종료된 Netflix 경연대회 (Netflix Prize)가 이 분야에 대한 연구자들의 연구 의욕을 고취시켰고, 특히 협력적 여과(Collaborative Filtering) 방법은 아이템의 종류에 상관 없이 적용 가능한 범용성 때문에 활발히 연구되고 있다. 본 논문은 강화 학습을 이용해서 추천 시스템의 협력적 여과 문제를 푸는 방법을 제안 한다. 강화 학습을 통해, 영화 평점 데이터에서 각 사용자가 평점을 매긴 순서에 따른 평점 간의 연관 관계를 학습하고자 하였다. 이를 위해 협력적 여과문제를 마르코프 결정 과정(Markov Decision Process)로 수학적으로 모델링하였고, 강화 학습의 가장 대표적인 알고리즘인 Q-learning을 사용해서 평가의 순서의 연관 관계를 학습하였다. 그리고 실제로 평가의 순서가 평가에 미치는 영향이 있음을 실험을 통해서 검증하였다.