Monolithic Germanium/Silicon Photodetectors With Decoupled Structures: Resonant APDs and UTC Photodiodes

The Ge/Si system is useful to realize avalanche photodetectors (APDs) operating at 1310~1550 nm because of the intrinsic advantages of complementary metal-oxide-semiconductor (CMOS) compatibility, high light-absorption of Ge, low ionization rate ratio of silicon, and high thermal conductivities of Si and Ge. With the Ge/Si system, it is convenient to realize photodetectors with decoupled structures including resonant Ge/Si APDs as well as uni-traveling carrier (UTC) photodiodes. The resonant Ge/Si APD with a separated absorption-charge-multiplication (SACM) structure, which decouples the light absorption and avalanche process, has high speed, high gain, and high gain-bandwidth product. The UTC photodiode, which decouples the light absorption and the carrier collection, is useful for high-power applications. This paper first reviews the structure and model of decoupled Ge/Si (A)PDs, particularly, the equivalent circuit models for explaining the peak enhancement of the frequency response in resonant SACM APDs. This model is also applied to UTC Ge/Si PDs developed recently for the high-power applications.

[1]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[2]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[3]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[4]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[5]  Yimin Kang,et al.  Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. , 2009, Optics express.

[6]  J. Bowers,et al.  High performance Ge/Si avalanche photodiodes development in intel , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[7]  P. Chen,et al.  Impact-Ionization-Induced Bandwidth-Enhancement of a Si–SiGe-Based Avalanche Photodiode Operating at a Wavelength of 830 nm With a Gain-Bandwidth Product of 428 GHz , 2007, IEEE Photonics Technology Letters.

[8]  B. Cheng,et al.  High-Saturation-Power and High-Speed Ge-on-SOI p-i-n Photodetectors , 2010, IEEE Electron Device Letters.

[9]  John E. Bowers,et al.  High-speed zero-bias waveguide photodetectors , 1986 .

[10]  Myung-Jae Lee,et al.  Equivalent Circuit Model for Si Avalanche Photodetectors Fabricated in Standard CMOS Process , 2008, IEEE Electron Device Letters.

[11]  M. Lipson,et al.  High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. , 2008, Optics express.

[12]  Qiugui Zhou,et al.  Geiger-Mode Operation of Ge-on-Si Avalanche Photodiodes , 2011, IEEE Journal of Quantum Electronics.

[13]  Hyo-Soon Kang,et al.  Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process , 2007 .

[14]  G. Lo,et al.  Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. , 2013, Optics express.

[15]  John E. Bowers,et al.  Traveling-wave photodetector design and measurements , 1996 .

[16]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[17]  M. J. Deen,et al.  Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling , 2001 .

[18]  M. Berroth,et al.  Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz , 2009, IEEE Photonics Technology Letters.

[19]  D. Guckenberger Microwave photonic applications for silicon photonics , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[20]  C. T. Kirk,et al.  A theory of transistor cutoff frequency (fT) falloff at high current densities , 1962, IRE Transactions on Electron Devices.

[21]  M. Halbwax,et al.  Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition , 2005 .

[22]  T. Ishibashi,et al.  High-Speed Response of Uni-Traveling-Carrier Photodiodes , 1997 .

[23]  Y. Chetrit,et al.  Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules , 2006, IEEE Photonics Technology Letters.

[24]  Frederic Boeuf,et al.  High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications , 2014, 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM).

[25]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[26]  Gianlorenzo Masini,et al.  High performance germanium-on-silicon detectors for optical communications , 2002 .

[27]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[28]  Yen-Chu Wang Small-signal characteristics of a read diode under conditions of field-dependent velocity and finite reverse saturation current , 1978 .

[29]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[30]  John E. Bowers,et al.  40 GHz Si/Ge Uni-Traveling Carrier Waveguide Photodiode , 2014, Journal of Lightwave Technology.

[31]  J. Bowers,et al.  Simple Matrix-Method Modeling for Avalanche Photodetectors With Arbitrary Layer Structures and Absorption/Multiplication Coefficients , 2010, Journal of Lightwave Technology.

[32]  Paul Crozat,et al.  High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited] , 2013 .

[33]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[34]  Jurgen Michel,et al.  Ge-on-Si optoelectronics , 2012 .

[35]  J. Bowers,et al.  Si/Ge uni-traveling carrier photodetector. , 2012, Optics express.

[36]  Yimin Kang,et al.  Derivation of the Small Signal Response and Equivalent Circuit Model for a Separate Absorption and Multiplication Layer Avalanche Photodetector , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  S. Koester,et al.  Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Joe C. Campbell,et al.  Study of bandwidth enhancement and non-linear behavior in avalanche photodiodes under high power condition , 2013 .

[39]  Yimin Kang,et al.  Resonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes. , 2009, Optics express.

[40]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[41]  Kazumi Wada,et al.  High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform , 2005 .

[42]  X. Le Roux,et al.  Germanium photodetector integrated in a Silicon-On-Insulator microwaveguide , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[43]  K. Williams,et al.  Design considerations for high-current photodetectors , 1999 .

[44]  Kazumi Wada,et al.  High-quality Ge epilayers on Si with low threading-dislocation densities , 1999 .

[45]  G. Masini,et al.  Metal-Semiconductor-Metal Near Infrared Light Detector Based on Epitaxial Ge on Si , 1998, CLEO/Europe Conference on Lasers and Electro-Optics.

[46]  Gyungock Kim,et al.  Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector , 2003 .

[47]  J. Bowers,et al.  High Power Silicon-Germanium Photodiodes for Microwave Photonic Applications , 2010, IEEE Transactions on Microwave Theory and Techniques.

[48]  M. Berroth,et al.  Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth , 2005, IEEE Photonics Technology Letters.

[49]  Christopher Batten,et al.  Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics , 2009, IEEE Micro.

[50]  Tsung-Yang Liow,et al.  310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. , 2012, Optics express.

[51]  Molly Piels,et al.  Nonlinear modeling of waveguide photodetectors. , 2013, Optics express.

[52]  Michael Hochberg,et al.  Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking. , 2012, Optics express.

[53]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[54]  T. Misawa Multiple uniform layer approximation in analysis of negative resistance in p-n junction in breakdown , 1967 .

[55]  Y. Akatsu,et al.  Ultra-wide-band long-wavelength photodetectors , 1996 .

[56]  Jean-Michel Hartmann,et al.  Integration of germanium waveguide photodetectors for intrachip optical interconnects , 2005 .

[57]  John E. Bowers,et al.  Monolithic Ge/Si avalanche photodiodes , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[58]  E. Cassan,et al.  UHV-CVD growth and annealing of thin fully relaxed Ge films on (0 0 1)Si. , 2005 .