The dual-pathway model of auditory signal processing

Similar to the visual dual-pathway model, neurophysiological studies in non-human primates have suggested that the dual-pathway model is also applicable for explaining auditory cortical processing, including the ventral “what” pathway for object identification and the dorsal “where” pathway for spatial localization. This review summarizes evidence from human neuroimaging studies supporting the dual-pathway model for auditory cortical processing in humans.摘要神经电生理学研究发现, 处理视觉信息的人大脑皮层的双通路模型概念也适用于非人灵长类动物大脑皮层听觉信息的加工, 即存在一条识别物体特征的腹侧通路和一条加工空间信息的背侧通路。本文系统地总结了近年来有关人类听觉加工的脑成像研究, 并根据这些实验结果对人听觉双通路的加工理论模型进行了讨论。

[1]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[2]  Lee M. Miller,et al.  Functional Convergence of Response Properties in the Auditory Thalamocortical System , 2001, Neuron.

[3]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[4]  R L Freyman,et al.  The role of perceived spatial separation in the unmasking of speech. , 1999, The Journal of the Acoustical Society of America.

[5]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[6]  Karsten Specht,et al.  Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI-task , 2003, NeuroImage.

[7]  M. Mishkin,et al.  Functional Mapping of the Primate Auditory System , 2003, Science.

[8]  A. Federspiel,et al.  Motion standstill leads to activation of inferior parietal lobe , 2006, Human brain mapping.

[9]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  G. Recanzone,et al.  Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. , 2006, Journal of neurophysiology.

[11]  J. Rauschecker,et al.  Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans , 1999, Nature Neuroscience.

[12]  Xihong Wu,et al.  Informational masking of Chinese speech under perceived spatial separation , 2005 .

[13]  B. Shinn-Cunningham,et al.  Task-modulated “what” and “where” pathways in human auditory cortex , 2006, Proceedings of the National Academy of Sciences.

[14]  Michael I. Miller,et al.  Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale , 2003, NeuroImage.

[15]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[16]  J. Rauschecker,et al.  Perception of Sound-Source Motion by the Human Brain , 2002, Neuron.

[17]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[18]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[19]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[20]  Claude Alain,et al.  Assessing the auditory dual-pathway model in humans , 2004, NeuroImage.

[21]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[22]  Jean-Philippe Thiran,et al.  What and Where in human audition: selective deficits following focal hemispheric lesions , 2002, Experimental Brain Research.

[23]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[24]  E G Jones,et al.  Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[25]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[26]  J. Thiran,et al.  Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study , 2000, NeuroImage.

[27]  Jochen Kaiser,et al.  Processing of location and pattern changes of natural sounds in the human auditory cortex , 2007, NeuroImage.

[28]  T. Griffiths,et al.  Distinct Mechanisms for Processing Spatial Sequences and Pitch Sequences in the Human Auditory Brain , 2003, The Journal of Neuroscience.

[29]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[30]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[31]  J. Rauschecker Parallel Processing in the Auditory Cortex of Primates , 1998, Audiology and Neurotology.

[32]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Doug J. K. Barrett,et al.  Response preferences for “what” and “where” in human non-primary auditory cortex , 2006, NeuroImage.

[37]  C. Grady,et al.  “What” and “where” in the human auditory system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. R. Jennings,et al.  Analysis of the spectral envelope of sounds by the human brain , 2005, NeuroImage.

[39]  Leslie G. Ungerleider Functional Brain Imaging Studies of Cortical Mechanisms for Memory , 1995, Science.

[40]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[41]  Stephanie Clarke,et al.  Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. , 2006, Cerebral cortex.

[42]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[44]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[45]  Péter Szigetvári,et al.  What and When? , 2019, Inauguration and Liturgical Kingship in the Long Twelfth Century.

[46]  Richard S. J. Frackowiak,et al.  Right parietal cortex is involved in the perception of sound movement in humans , 1998, Nature Neuroscience.

[47]  Patricia S. Goldman-Rakic,et al.  Reply to '‘What’, ‘where’ and ‘how’ in auditory cortex' , 2000, Nature Neuroscience.

[48]  Stephen R. Arnott,et al.  The Functional Organization of Auditory Working Memory as Revealed by fMRI , 2005, Journal of Cognitive Neuroscience.

[49]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[50]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[51]  Ankoor S. Shah,et al.  Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. , 2007, Cerebral cortex.

[52]  Antti Korvenoja,et al.  Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks , 2005, Clinical Neurophysiology.

[53]  Joseph B. Sala,et al.  Dissociable functional cortical topographies for working memory maintenance of voice identity and location. , 2004, Cerebral cortex.

[54]  R. Meuli,et al.  Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways , 2000, Neuropsychologia.

[55]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[56]  Gian Luca Romani,et al.  “What” versus “Where” in the audiovisual domain: An fMRI study , 2006, NeuroImage.

[57]  M. Schönwiesner,et al.  Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. , 2005, Cerebral cortex.

[58]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Kaas,et al.  Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[60]  M. Atzori,et al.  Differential synaptic processing separates stationary from transient inputs to the auditory cortex , 2001, Nature Neuroscience.

[61]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[62]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Griffiths,et al.  The planum temporale as a computational hub , 2002, Trends in Neurosciences.