Robust Approximation of Temporal CSP

A temporal constraint language G is a set of relations with first-order definitions in (Q; = 0, given a (1-e)-satisfiable instance of CSP(G), we can compute an assignment that satisfies at least a (1-f(e))-fraction of constraints in polynomial time. Here, f(e) is some function satisfying f(0)=0 and f(e) goes 0 as e goes 0. Firstly, we give a qualitative characterization of robust approximability: Assuming the Unique Games Conjecture, we give a necessary and sufficient condition on G under which CSP(G) admits robust approximation. Secondly, we give a quantitative characterization of robust approximability: Assuming the Unique Games Conjecture, we precisely characterize how f(e) depends on e for each G. We show that our robust approximation algorithms can be run in almost linear time.

[1]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[2]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[3]  Ryan O'Donnell,et al.  Linear programming, width-1 CSPs, and robust satisfaction , 2012, ITCS '12.

[4]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[5]  David Steurer,et al.  Fast SDP algorithms for constraint satisfaction problems , 2010, SODA '10.

[6]  Nikhil Bansal,et al.  Correlation Clustering , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[7]  Venkatesan Guruswami,et al.  Clustering with qualitative information , 2005, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[8]  Manuel Bodirsky,et al.  Constraint satisfaction with infinite domains , 2004 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[11]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[12]  Subhash Khot On the Unique Games Conjecture (Invited Survey) , 2010, Computational Complexity Conference.

[13]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[14]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[15]  Peter van Beek,et al.  Reasoning About Qualitative Temporal Information , 1990, Artif. Intell..

[16]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, Theory of Computing Systems.

[17]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[18]  Libor Barto,et al.  Robust satisfiability of constraint satisfaction problems , 2012, STOC '12.

[19]  Prasad Raghavendra,et al.  Beating the Random Ordering Is Hard: Every Ordering CSP Is Approximation Resistant , 2011, SIAM J. Comput..

[20]  Andrei A. Krokhin,et al.  Robust Satisfiability for CSPs: Hardness and Algorithmic Results , 2013, TOCT.

[21]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[22]  P. Raghavendra,et al.  Approximating np-hard problems efficient algorithms and their limits , 2009 .

[23]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[24]  Michael Pinsker,et al.  The reducts of equality up to primitive positive interdefinability , 2010, J. Symb. Log..

[25]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[26]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[27]  Roman Barták,et al.  Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.

[28]  Venkatesan Guruswami,et al.  Tight bounds on the approximability of almost-satisfiable Horn SAT and exact hitting set , 2011, SODA '11.

[29]  Manuel Bodirsky,et al.  The Complexity of Temporal Constraint Languages , 2008 .

[30]  Uri Zwick,et al.  Finding almost-satisfying assignments , 1998, STOC '98.