The effect of adaptive change in the prey on the dynamics of an exploited predator population

Mathematical models examine the relationship between harvesting effort and stock size for a predator spe- cies when the prey adapts to the risk of predation. In one set of models, the prey can increase its own reproductive rate if it increases its vulnerability to the predator. In the second set of models, each of two prey species has fixed characteristics, but changes in the average characteristics within the prey trophic level occur via shifts in the relative abundance of the two species. In both models, the equilibrium predator population can increase as harvest of that spe- cies increases. In the case of two-prey models, the predator's equilibrium population always increases with an increased harvest rate if the two prey coexist and share a single resource. The predator's equilibrium population often decreases from its maximum size to zero over a very small range of harvest rates, once those rates become high enough. Because increased stock size is often used to justify increased harvest rates, this relationship poses a risk that harvest rate will increase to the point where the stock quickly collapses. The results are relevant to understanding changes in the popu- lation size of a species experiencing declining environmental conditions. Resume : Des modeles mathematiques examinent la relation qui existe entre l'effort de recolte et la taille du stock chez une espece predatrice lorsque la proie s'adapte au risque de predation. Dans une premiere serie de modeles, la proie peut augmenter son propre taux de reproduction si sa vulnerabilite au predateur augmente. Dans une seconde serie de modeles, chacune de deux especes de proies possede des caracteristiques fixes, mais les changements dans les caracteristiques moyennes au niveau trophique des proies se font au moyen de modifications dans l'abondance relative des deux especes. Dans les deux modeles, la population d'equilibre du predateur peut croitre a mesure que la recolte de l'espece augmente. Dans le cas du modele a deux proies, la population d'equilibre du predateur augmente toujours en fonction de la recolte si les deux proies coexistent et partagent une meme et unique ressource. La population d'equilibre du predateur diminue souvent de sa taille maximale a zero sur une gamme tres restreinte de taux de recolte, une fois que les taux ont atteint une certaine valeur. Parce que l'augmentation des stocks sert souvent a justifier une augmentation de la recolte, cette relation entraine le risque que le taux de recolte augmente au point que le stock s'effondre rapidement. Ces resultats sont d'interet pour comprendre les changements dans la taille de la population chez une espece qui subit un declin des conditions de son environnement. (Traduit par la Redaction) Abrams and Matsuda 766

[1]  Hiroyuki Matsuda,et al.  Effects of predatorprey interactions and adaptive change on sustainable yield , 2004 .

[2]  Villy Christensen,et al.  Representing Density Dependent Consequences of Life History Strategies in Aquatic Ecosystems: EcoSim II , 2000, Ecosystems.

[3]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[4]  C. Jeffries Qualitative Stability and Digraphs in Model Ecosystems , 1974 .

[5]  P. Taylor,et al.  Evolutionary stability under the replicator and the gradient dynamics , 1997, Evolutionary Ecology.

[6]  James P. Grover,et al.  Simple Rules for Interspecific Dominance in Systems with Exploitative and Apparent Competition , 1994, The American Naturalist.

[7]  Mark J. Brush,et al.  Toward Ecosystem-Based Fisheries Management , 2003 .

[8]  C. Quince,et al.  The impact of mortality on predator population size and stability in systems with stage-structured prey. , 2005, Theoretical population biology.

[9]  K. Bjorndal,et al.  Historical Overfishing and the Recent Collapse of Coastal Ecosystems , 2001, Science.

[10]  Pa Abrams,et al.  Prey evolution as a cause of predator-prey cycles , 1997 .

[11]  Robert A. Armstrong,et al.  Prey Species Replacement along a Gradient of Nutrient Enrichment: A Graphical Approach , 1979 .

[12]  T. Pitcher,et al.  Towards sustainability in world fisheries , 2002, Nature.

[13]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[14]  P. Abrams,et al.  PREY ADAPTATION AS A CAUSE OF PREDATOR‐PREY CYCLES , 1997, Evolution; international journal of organic evolution.

[15]  M. Heino,et al.  Fisheries-Induced Selection Pressures in the Context of Sustainable Fisheries , 2002 .

[16]  Steven J. D. Martell,et al.  Fisheries Ecology and Management , 2004 .

[17]  C. Walters,et al.  Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments , 1997, Reviews in Fish Biology and Fisheries.

[18]  G. Mittelbach,et al.  Predator Avoidance and Community Structure: Interactions among Piscivores, Planktivores, and Plankton , 1990 .

[19]  Carl J. Walters,et al.  BEHAVIORALLY MEDIATED INDIRECT INTERACTIONS IN MARINE COMMUNITIES AND THEIR CONSERVATION IMPLICATIONS , 2003 .

[20]  P. Abrams Will Small Population Sizes Warn Us of Impending Extinctions? , 2002, The American Naturalist.

[21]  Peter A. Abrams,et al.  IS PREDATOR‐MEDIATED COEXISTENCE POSSIBLE INUNSTABLE SYSTEMS? , 1999 .

[22]  Jeremy S. Collie,et al.  Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? , 2000 .

[23]  Terrance J. Quinn,et al.  Quantitative Fish Dynamics , 1999 .

[24]  Carl J. Walters,et al.  Invulnerable Prey and the Paradox of Enrichment , 1996 .

[25]  Mathew A. Leibold,et al.  A Graphical Model of Keystone Predators in Food Webs: Trophic Regulation of Abundance, Incidence, and Diversity Patterns in Communities , 1996, The American Naturalist.

[26]  S. L. Lima Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives , 1998 .

[27]  E. Knut,et al.  Paris Meeting of the International Council for the Exploration of the Sea , 1923, Nature.

[28]  U. Dieckmann,et al.  The Dynamical Theory of Coevolution : A Derivation from Stochastic Ecological Processes , 1996 .

[29]  L. Persson,et al.  Species-specific antipredator capacities and prey refuges: interactions between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus) , 1995, Behavioral Ecology and Sociobiology.

[30]  L. Rudstam,et al.  Predator responses to prey population dynamics: an empirical analysis based on lake trout growth rates , 1995 .

[31]  R. Holt,et al.  Disentangling Resource and Apparent Competition: Realistic Models for Plant-herbivore Communities , 1998 .

[32]  P. Abrams,et al.  Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits , 1993, Evolutionary Ecology.

[33]  P. Abrams,et al.  Introducing the symposium "Building on Beverton's legacy: life history variation and fisheries management" , 2005 .

[34]  Abrams Modelling the adaptive dynamics of traits involved in inter‐ and intraspecific interactions: An assessment of three methods , 2001 .

[35]  C. Walters,et al.  Quantitative fisheries stock assessment: Choice, dynamics and uncertainty , 2004, Reviews in Fish Biology and Fisheries.

[36]  K. Winemiller Life history strategies, population regulation, and implications for fisheries management , 2005 .

[37]  John A. Endler,et al.  Experimentally induced life-history evolution in a natural population , 1990, Nature.

[38]  Ole Arve Misund,et al.  Underwater acoustics in marine fisheries and fisheries research , 1997, Reviews in Fish Biology and Fisheries.

[39]  Joydev Chattopadhyay,et al.  Enrichment and ecosystem stability: Effect of toxic food , 2007, Biosyst..

[40]  Y. Iwasa,et al.  Aggregation in model ecosystems. I. Perfect aggregation , 1987 .

[41]  J. F. Gilliam,et al.  Nonlethal Impacts of Predator Invasion: Facultative Suppression of Growth and Reproduction , 1992 .