The number of discernible colors in natural scenes.

The number of colors discernible by normal trichromats has been estimated for the idealized object-color solid. How well these estimates apply to natural scenes is an open question, as it is unknown how much their colors approach the theoretical limits. The aim of this work was to estimate the number of discernible colors based on a database of hyperspectral images of 50 natural scenes. The color volume of each scene was computed in the CIELAB color space and was analyzed using the CIEDE2000 color-difference formula. It was found that the color volume of the set of natural scenes was about 30% of the theoretical maximum for the full object-color solid, and it corresponded to a number of about 2.3 million discernible colors. Moreover, when the lightness dimension was ignored, only about 26,000 (1%) could be perceived as different colors. These results suggest that natural stimuli may be more constrained than expected from the analysis of the theoretical limits.

[1]  Erwin Schrödinger,et al.  Theorie der Pigmente von größter Leuchtkraft , 1920 .

[2]  Nikolaus Nyberg Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen , 1929 .

[3]  D. L. Macadam The Theory of the Maximum Visual Efficiency of Colored Materials , 1935 .

[4]  D. L. Macadam Maximum Visual Efficiency of Colored Materials , 1935 .

[5]  Dorothy Nickerson,et al.  A Psychological Color Solid , 1943 .

[6]  D. L. Macadam Note on the number of distinct chromaticities. , 1947, Journal of the Optical Society of America.

[7]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[8]  M. Pointer The Gamut of Real Surface Colours , 1980 .

[9]  D. Stork,et al.  The Physics and Chemistry of Color: The Fifteen Causes of Color , 1983 .

[10]  M. Luo,et al.  Chromaticity‐discrimination ellipses for surface colours , 1986 .

[11]  K. Witt Parametric effects on surface color-difference evaluation at threshold† , 1990 .

[12]  Mitchell R. Balonon-Rosen,et al.  Visual determination of suprathreshold color‐difference tolerances using probit analysis , 1991 .

[13]  J. Krauskopf,et al.  Color discrimination and adaptation , 1992, Vision Research.

[14]  M. Webster,et al.  Adaptation and the color statistics of natural images , 1997, Vision Research.

[15]  Brian A. Wandell,et al.  Color image quality metric S-CIELAB and its application on halftone texture visibility , 1997, Proceedings IEEE COMPCON 97. Digest of Papers.

[16]  G. G. Attridge,et al.  The number of discernible colours , 1998 .

[17]  M. R. Pointer,et al.  On the number of discernible colours , 1998 .

[18]  Kurt Nassau,et al.  Color for Science, Art and Technology , 1998 .

[19]  Michael H. Brill,et al.  Color appearance models , 1998 .

[20]  K. Witt GEOMETRIC RELATIONS BETWEEN SCALES OF SMALL COLOUR DIFFERENCES , 1999 .

[21]  R. Tilley,et al.  Colour and the Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour , 2000 .

[22]  M. Luo,et al.  The development of the CIE 2000 Colour Difference Formula , 2001 .

[23]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Guihua Cui,et al.  Uniform colour spaces based on the DIN99 colour‐difference formula , 2002 .

[25]  Michael R. Pointer Request for real surface colours , 2002 .

[26]  B. Rigg,et al.  Further comments on CIEDE2000 , 2002 .

[27]  Ján Morovic,et al.  Inter-Relating Colour Difference Metrics , 2002, Color Imaging Conference.

[28]  Flávio P. Ferreira,et al.  Statistics of spatial cone-excitation ratios in natural scenes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  7 – The Physics and Chemistry of Color: the 15 Mechanisms , 2003 .

[30]  Mark D. Fairchild,et al.  A top down description of S-CIELAB and CIEDE2000 , 2003 .

[31]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[32]  Vasco M N de Almeida,et al.  Minimum-variance cone-excitation ratios and the limits of relational color constancy , 2004, Visual Neuroscience.

[33]  Chromatic diversity of natural scenes , 2004 .

[34]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[35]  Kinjiro Amano,et al.  Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Kinjiro Amano,et al.  Viewing Natural Scenes Through Colored Filters , 2005 .

[37]  David H Foster,et al.  Visual sensitivity to color errors in images of natural scenes , 2006, Visual Neuroscience.

[38]  Ioanna Kakoulli,et al.  Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications , 2006 .

[39]  Joel Pokorny,et al.  Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation , 2006, Visual Neuroscience.

[40]  Francisco Martínez-Verdú,et al.  Computing the Number of Distinguishable Colors under Several Illuminants and Light Sources , 2006, CGIV.

[41]  Senfar Wen Display gamut comparison with number of discernible colors , 2006, J. Electronic Imaging.

[42]  Sérgio M C Nascimento,et al.  Psychophysical estimation of the best illumination for appreciation of Renaissance paintings , 2006, Visual Neuroscience.

[43]  D. Foster,et al.  Frequency of metamerism in natural scenes , 2006 .

[44]  K. Gegenfurtner,et al.  Memory modulates color appearance , 2006, Nature Neuroscience.

[45]  Francisco Martínez-Verdú,et al.  Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  K R Gegenfurtner,et al.  Chromatic and luminance edges in natural scenes , 2007 .

[47]  Luc Tremblay,et al.  Online Control of Discrete Action following Visual Perturbation , 2007, Perception.

[48]  João Manuel Maciel Linhares,et al.  Correlated color temperature preferred by observers for illumination of artistic paintings. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  K. Gegenfurtner,et al.  Chromatic discrimination of natural objects. , 2008, Journal of vision.

[50]  Iain D Gilchrist,et al.  Oculomotor capture by transient events: a comparison of abrupt onsets, offsets, motion, and flicker. , 2008, Journal of vision.

[51]  Sérgio M C Nascimento,et al.  The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses , 2008, Visual Neuroscience.

[52]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.