Fast and Ultrafast Quantitative 2D NMR

Abstract Nuclear magnetic resonance (NMR) offers great potential for quantitative analysis of metabolic samples, but accurate and precise quantitative analysis is often made difficult by a high degree of spectral overlap. Multi-dimensional NMR offers an interesting alternative, as it provides a much better discrimination of resonances. However, its use for quantitative analysis is limited by its long acquisition duration and its multi-impulsional character. Nevertheless, numerous improvements in the quantitative performance of 2D NMR have been made during the past decade, facilitating a wide range of applications. This review assesses the recent contributions brought to the field of quantitative 2D NMR, and provides a survey of recent studies of metabolic samples using this methodology. The ongoing need for developing and optimizing powerful tools is first examined. It highlights the necessity of reducing the experimental duration, resulting in a fast 2D NMR approach. This methodology is then described, relying on recent applications to metabolic samples. The last section of the chapter describes a more recent approach, ultrafast 2D NMR, which makes it possible to record multi-dimensional spectra in a single scan. The principles and the analytical performances of this novel methodology are described, as well as its perspectives in terms of quantitative analysis.

[1]  R. Freeman,et al.  Two-dimensional Hadamard spectroscopy. , 2003, Journal of magnetic resonance.

[2]  Rocco Romano,et al.  Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach. , 2008, Journal of magnetic resonance.

[3]  M. A. Troncoso-Ponce,et al.  1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues , 2008, Nature Protocols.

[4]  Neeraj Sinha,et al.  Quantification of metabolites from two-dimensional nuclear magnetic resonance spectroscopy: application to human urine samples. , 2009, Analytical chemistry.

[5]  H. Kalinowski,et al.  150 and More Basic NMR Experiments: A Practical Course , 1996 .

[6]  M. Toikka,et al.  Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. , 2003, Journal of the American Chemical Society.

[7]  R. Freeman,et al.  Stretched Adiabatic Pulses for Broadband Spin Inversion , 1995 .

[8]  J. Lindon,et al.  Resolution enhancement in FT NMR through the use of a double exponential function , 1978 .

[9]  S. Akoka,et al.  "Multi-scan single shot" quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR. , 2011, The Analyst.

[10]  A. J. Shaka,et al.  Simplification of NMR spectra by filtration through multiple-quantum coherence , 1983 .

[11]  V. Rizzo,et al.  Quantitative NMR in synthetic and combinatorial chemistry. , 2005, Journal of pharmaceutical and biomedical analysis.

[12]  D. Jeannerat Computer optimized spectral aliasing in the indirect dimension of (1)H-(13)C heteronuclear 2D NMR experiments. A new algorithm and examples of applications to small molecules. , 2007, Journal of magnetic resonance.

[13]  Lucio Frydman,et al.  The acquisition of multidimensional NMR spectra within a single scan , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. T. Pegg,et al.  Polarization transfer pulse sequences for two-dimensional NMR by heisenberg vector analysis , 1981 .

[15]  K. Ding Accurate measurements of multiple-bond 13C-1H coupling constants from phase-sensitive 2D INEPT spectra. , 1999, Journal of magnetic resonance.

[16]  Ray Freeman,et al.  NMR population inversion using a composite pulse , 1979 .

[17]  Richard R. Ernst,et al.  Sensitivity of two-dimensional NMR spectroscopy , 1978 .

[18]  R. Freeman,et al.  Radiofrequency pulse sequences which compensate their own imperfections , 1980, Journal of magnetic resonance.

[19]  Paul Schanda,et al.  Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. , 2005, Journal of the American Chemical Society.

[20]  Philippe Pelupessy,et al.  Adiabatic single scan two-dimensional NMR spectrocopy. , 2003, Journal of the American Chemical Society.

[21]  Morris Bader,et al.  A systematic approach to standard addition methods in instrumental analysis , 1980 .

[22]  Ralph E. Hurd,et al.  Gradient-enhanced proton-detected heteronuclear multiple-quantum coherence spectroscopy , 1991 .

[23]  R. R. Ernst,et al.  Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .

[24]  D. Turner Carbon-13 autocorrelation NMR using double-quantum coherence , 1982 .

[25]  S. Akoka,et al.  Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements. , 2010, Analytical chemistry.

[26]  Lucio Frydman,et al.  Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR. , 2009, The Journal of chemical physics.

[27]  S. Akoka,et al.  A new gradient-controlled method for improving the spectral width of ultrafast 2D NMR experiments. , 2010, Journal of magnetic resonance.

[28]  H. Senn,et al.  Fast-HMQC using Ernst angle pulses: An efficient tool for screening of ligand binding to target proteins , 1997, Journal of biomolecular NMR.

[29]  P. Dais,et al.  31P NMR spectroscopy in the quality control and authentication of extra‐virgin olive oil: A review of recent progress , 2007, Magnetic resonance in chemistry : MRC.

[30]  J. Hook,et al.  17O quantitative nuclear magnetic resonance spectroscopy of gasoline and oxygenated additives. , 2003, Analytical chemistry.

[31]  A. Bax,et al.  Correlation of proton chemical shifts by two-dimensional Fourier transform NMR , 1981 .

[32]  O Henriksen,et al.  Absolute metabolite quantification by in vivo NMR spectroscopy: I. Introduction, objectives and activities of a concerted action in biomedical research. , 1998, Magnetic resonance imaging.

[33]  A. Bax,et al.  Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy , 1986 .

[34]  J. K. Kwakye Use of nmr for quantitative analysis of pharmaceuticals. , 1985, Talanta.

[35]  John C. Lindon,et al.  Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids , 2000 .

[36]  L. Frydman,et al.  Kinetics from indirectly detected hyperpolarized NMR spectroscopy by using spatially selective coherence transfers. , 2011, Chemistry.

[37]  G. Bodenhausen,et al.  Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy , 1980 .

[38]  Y. Choi,et al.  NMR-based metabolomic analysis of plants , 2010, Nature Protocols.

[39]  L. Jørgensen,et al.  Quantitative high-resolution 13C nuclear magnetic resonance of anserine and lactate in white muscle of Atlantic salmon (Salmo salar) , 1995 .

[40]  Gregory D. Tredwell,et al.  Between-person comparison of metabolite fitting for NMR-based quantitative metabolomics. , 2011, Analytical chemistry.

[41]  Rolf Gruetter,et al.  Proton NMR of (15)N-choline metabolites enhanced by dynamic nuclear polarization. , 2009, Journal of the American Chemical Society.

[42]  J. Hoch Maximum entropy signal processing of two-dimensional NMR data , 1985 .

[43]  Russ Greiner,et al.  Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. , 2007, Analytical chemistry.

[44]  N. Michel,et al.  The application of the ERETIC method to 2D-NMR. , 2004, Journal of magnetic resonance.

[45]  Lucio Frydman,et al.  Single-scan multidimensional magnetic resonance. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[46]  K. Wüthrich,et al.  Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. , 1983, Biochemical and biophysical research communications.

[47]  John L. Markley,et al.  Deconvolution of Two-Dimensional NMR Spectra by Fast Maximum Likelihood Reconstruction: Application to Quantitative Metabolomics , 2011, Analytical chemistry.

[48]  S. Akoka,et al.  Fast and precise quantitative analysis of metabolic mixtures by 2D 1H INADEQUATE NMR. , 2011, Journal of pharmaceutical and biomedical analysis.

[49]  A continuous phase-modulated approach to spatial encoding in ultrafast 2D NMR spectroscopy. , 2005, Journal of magnetic resonance.

[50]  T. Mareci,et al.  Quantitative analysis of mixtures by carbon-13 nuclear magnetic resonance spectrometry , 1977 .

[51]  S. Akoka,et al.  Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine-nortropine mixtures. , 2007, Journal of pharmaceutical and biomedical analysis.

[52]  Ray Freeman,et al.  Compensation for Pulse Imperfections in NMR Spin-Echo Experiments , 1981 .

[53]  M R Viant,et al.  Fast targeted multidimensional NMR metabolomics of colorectal cancer , 2009, Magnetic resonance in chemistry : MRC.

[54]  S. Akoka,et al.  Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate. , 2005, Journal of agricultural and food chemistry.

[55]  Daniel Raftery,et al.  Quantitative analysis of blood plasma metabolites using isotope enhanced NMR methods. , 2010, Analytical chemistry.

[56]  Guido F Pauli,et al.  Quantitative 1H NMR: development and potential of a method for natural products analysis. , 2005, Journal of natural products.

[57]  R G Griffin,et al.  High field dynamic nuclear polarization--the renaissance. , 2010, Physical chemistry chemical physics : PCCP.

[58]  Brian E. Smith,et al.  Optimal conditions for obtaining quantitative 13C NMR, data , 1984 .

[59]  S. Cai,et al.  Ultrafast 2D COSY with constant-time phase-modulated spatial encoding. , 2010, Journal of magnetic resonance.

[60]  Wolfgang Bermel,et al.  Gradient selection in inverse heteronuclear correlation spectroscopy , 1993 .

[61]  J. Shoolery Some quantitative applications of 13C NMR spectroscopy , 1977 .

[62]  W. Dietrich,et al.  Fast and precise automatic baseline correction of one- and two-dimensional nmr spectra , 1991 .

[63]  S. Akoka,et al.  Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D 1H INADEQUATE NMR , 2012, NMR in biomedicine.

[64]  G. Pauli,et al.  qNMR--a versatile concept for the validation of natural product reference compounds. , 2001, Phytochemical analysis : PCA.

[65]  C. Mountford,et al.  The effect of altering time domains and window functions in two-dimensional proton COSY spectra of biological specimens , 1991 .

[66]  Patrick Giraudeau,et al.  Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. , 2011, Analytical chemistry.

[67]  Mathilde H. Lerche,et al.  Generating highly polarized nuclear spins in solution using dynamic nuclear polarization , 2004 .

[68]  Jean-Charles Portais,et al.  Application of 2D-TOCSY NMR to the measurement of specific(13C-enrichments in complex mixtures of 13C-labeled metabolites. , 2007, Metabolic engineering.

[69]  J. Skilling,et al.  Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments , 1987 .

[70]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[71]  Gareth A. Morris,et al.  Systematic sources of signal irreproducibility and t1 noise in high-field NMR spectrometers , 1992 .

[72]  Patrick Giraudeau,et al.  A new detection scheme for ultrafast 2D J-resolved spectroscopy. , 2007, Journal of magnetic resonance.

[73]  M. Garwood,et al.  Broadband adiabatic refocusing without phase distortion. , 1997, Journal of magnetic resonance.

[74]  P. Giraudeau,et al.  Improvement of the inverse-gated-decoupling sequence for a faster quantitative analysis of various samples by 13C NMR spectroscopy. , 2006, Journal of magnetic resonance.

[75]  Gil Navon,et al.  Enhancement of Solution NMR and MRI with Laser-Polarized Xenon , 1996, Science.

[76]  Jean-Charles Portais,et al.  NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. , 2007, Phytochemistry.

[77]  S. Akoka,et al.  Precise and accurate quantitative (13)C NMR with reduced experimental time. , 2007, Talanta.

[78]  Y. Choi,et al.  Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic resonance spectroscopy , 2006 .

[79]  K. Behar,et al.  Quantification of high-resolution (1)H NMR spectra from rat brain extracts. , 2011, Analytical chemistry.

[80]  Bingwen Hu,et al.  Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets. , 2011, Chemistry.

[81]  S. Akoka,et al.  Resolution and sensitivity aspects of ultrafast J-resolved 2D NMR spectra. , 2008, Journal of magnetic resonance.

[82]  Lucio Frydman,et al.  Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions. , 2004, Journal of magnetic resonance.

[83]  S. Akoka,et al.  Sources of sensitivity losses in ultrafast 2D NMR. , 2008, Journal of magnetic resonance.

[84]  Harri Koskela,et al.  Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers. , 2010, Journal of magnetic resonance.

[85]  Erin E. Carlson,et al.  Targeted profiling: quantitative analysis of 1H NMR metabolomics data. , 2006, Analytical chemistry.

[86]  W. M. Westler,et al.  Two‐dimensional correlated spectroscopy (COSY) of intact frog muscle: Spectral pattern characterization and lactate quantitation , 1989, Magnetic resonance in medicine.

[87]  Ad Bax,et al.  Baseline distortion in real-Fourier-transform NMR spectra , 1988 .

[88]  G. Le Gall,et al.  Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. , 2003, Journal of agricultural and food chemistry.

[89]  T. Fujiwara,et al.  Composite inversion pulses with frequency switching and their application to broadband decoupling , 1988 .

[90]  M. Miller,et al.  Maximum-likelihood estimation for nuclear magnetic resonance spectroscopy , 1989 .

[91]  S. Akoka,et al.  Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. , 2004, Journal of agricultural and food chemistry.

[92]  K. Wüthrich,et al.  Improvement of 2D NOE and 2D correlated spectra by triangular multiplication , 1981 .

[93]  Horst Kessler,et al.  Two‐Dimensional NMR Spectroscopy: Background and Overview of the Experiments [New Analytical Methods (36)] , 1988 .

[94]  Magnetic resonance in chemistry and biology : based on lectures at the Ampère International Summer School on Magnetic Resonance in Chemistry and Biology, Baško Polje, Yugoslavia, June 1971 , 1975 .

[95]  V. Basus,et al.  Utilization of chirp frequency modulation with 180°-phase modulation for heteronuclear spin decoupling , 1979 .

[96]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[97]  R. Freeman A handbook of nuclear magnetic resonance , 1987 .

[98]  D. Jeannerat High resolution in heteronuclear 1H–13C NMR experiments by optimizing spectral aliasing with one‐dimensional carbon data , 2003 .

[99]  Lucio Frydman,et al.  Principles and features of single-scan two-dimensional NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[100]  Richard R. Ernst,et al.  Multiple quantum filters for elucidating NMR coupling networks , 1982 .

[101]  S. Akoka,et al.  Evaluation of ultrafast 2D NMR for quantitative analysis. , 2009, Analytical chemistry.

[102]  U. Holzgrabe Quantitative NMR spectroscopy in pharmaceutical applications. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[103]  F. Thomas,et al.  Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. , 2011, Talanta.

[104]  Y. Choi,et al.  Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. , 2007, Journal of biotechnology.

[105]  S. Akoka,et al.  Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR. , 2007, Journal of magnetic resonance.

[106]  Elimination of Refocusing Pulses in NMR Experiments , 1984 .

[107]  Richard R. Ernst,et al.  Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy , 1976 .

[108]  J. Lown,,et al.  Structure and conformation of the duplex consensus acceptor exon:intron junction d[(CpTpApCpApGpGpT). (ApCpCpTpGpTpApG)] deduced from high-field 1H-NMR of non-exchangeable and imino protons. , 1986, Journal of biomolecular structure & dynamics.

[109]  Ray Freeman,et al.  Adiabatic pulses for wideband inversion and broadband decoupling , 1995 .

[110]  Lucio Frydman,et al.  Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions , 2007 .

[111]  S. Akoka,et al.  Sensitivity and lineshape improvement in ultrafast 2D NMR by optimized apodization in the spatially encoded dimension , 2011, Magnetic resonance in chemistry : MRC.

[112]  C. Moonen,et al.  Rapid recording of solvent-suppressed 2D COSY spectra with inherent quadrature detection using pulsed field gradients , 1991 .

[113]  Dietmar Stehlik,et al.  Dynamic Nuclear Polarization in Liquids , 1968 .

[114]  L. Mueller Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence , 1979 .

[115]  P. Pelupessy,et al.  Speeding up nuclear magnetic resonance spectroscopy by the use of SMAll Recovery Times - SMART NMR. , 2010, Journal of magnetic resonance.

[116]  A simple approach for phase‐modulated single‐scan 2D NMR spectroscopy , 2005, Magnetic resonance in chemistry : MRC.

[117]  N. Kruger,et al.  Metabolite fingerprinting and profiling in plants using NMR. , 2004, Journal of experimental botany.

[118]  J. Jungnickel,et al.  Quantitative Measurement of Hydrogen Types by Intergrated Nuclear Magnetic Resonance Intensities. , 1963 .

[119]  Yusuke Kato,et al.  Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. , 2007, Journal of agricultural and food chemistry.

[120]  M. Girvin Increased Sensitivity of COSY Spectra by Use of Constant-Time t1 Periods (CT COSY) , 1994 .

[121]  Ray Freeman,et al.  Sources of t1 noise in two-dimensional NMR , 1984 .

[122]  Patrick Giraudeau,et al.  Sensitivity losses and line shape modifications due to molecular diffusion in continuous encoding ultrafast 2D NMR experiments. , 2008, Journal of magnetic resonance.

[123]  G. Vlahov,et al.  Application of NMR to the study of olive oils , 1999 .

[124]  A. J. Shaka,et al.  Adjustable, broadband, selective excitation with uniform phase. , 2002, Journal of magnetic resonance.

[125]  W. M. Westler,et al.  NMR Method for Measuring Carbon-13 Isotopic Enrichment of Metabolites in Complex Solutions , 2010, Analytical chemistry.

[126]  C. Griesinger,et al.  Two‐Dimensional NMR Spectroscopy: Background and Overview of the Experiments , 1988 .

[127]  R. Freeman,et al.  Fast multidimensional NMR: radial sampling of evolution space. , 2005, Journal of magnetic resonance.

[128]  Richard R. Ernst,et al.  Improvement of 2D NOE and 2D correlated spectra by symmetrization , 1981 .

[129]  J. Ardenkjær-Larsen,et al.  Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  D. Morvan,et al.  Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: Demonstration of phospholipid metabolism alterations , 2003, Magnetic resonance in medicine.

[131]  Manuel Martín-Pastor,et al.  A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data. , 2006, Journal of magnetic resonance.

[132]  Richard Eisenberg,et al.  Para hydrogen induced polarization in hydrogenation reactions , 1987 .

[133]  Geoffrey Bodenhausen,et al.  Experimental aspects of chirp NMR spectroscopy , 1993 .

[134]  Helen M. Parsons,et al.  Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics. , 2008, Analytica chimica acta.

[135]  A. Bax,et al.  1H and13C Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR , 1986 .

[136]  R. Freeman,et al.  Resolving overlap in two‐dimensional NMR spectra: nuclear Overhauser effects in a polysaccharide , 2005, Magnetic resonance in chemistry : MRC.

[137]  Changguo Tang An Analysis of Baseline Distortion and Offset in NMR Spectra , 1994 .

[138]  Richard R. Ernst,et al.  Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy , 1983 .

[139]  Ralph E Hurd,et al.  Gradient enhanced spectroscopy. , 1990, Journal of magnetic resonance.

[140]  A. Delort,et al.  Production of maltodextrin 1‐Phosphate by Fibrobacter succinogenes S85 , 2004, FEBS letters.

[141]  L. Frydman,et al.  Principles and progress in ultrafast multidimensional nuclear magnetic resonance. , 2009, Annual review of physical chemistry.

[142]  P. Pelupessy,et al.  Improving resolution in single-scan 2D spectroscopy. , 2008, Journal of magnetic resonance.

[143]  Henrik Antti,et al.  Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. , 2003, Analytical biochemistry.

[144]  Ad Bax,et al.  Investigation of complex networks of spin-spin coupling by two-dimensional NMR , 1981 .

[145]  Mark R Viant,et al.  Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. , 2008, Analytica chimica acta.

[146]  Lucio Frydman,et al.  Ultrafast Multidimensional NMR: Principles and Practice of Single‐Scan Methods , 2008 .

[147]  John L Markley,et al.  Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. , 2007, Analytical chemistry.

[148]  I. Kilpeläinen,et al.  Some aspects of quantitative 2D NMR. , 2005, Journal of magnetic resonance.

[149]  T. Väänänen,et al.  Quantitative determination of aliphatic hydrocarbon compounds by 2D NMR , 2002 .

[150]  S. Akoka,et al.  Ultrafast hetero-nuclear 2D J-resolved spectroscopy. , 2012, Journal of magnetic resonance.

[151]  T. Mavromoustakos,et al.  13C NMR analysis of the triacylglycerol composition of Greek virgin olive oils , 1997 .

[152]  R. Chylla,et al.  Practical Model Fitting Approaches to the Direct Extraction of NMR Parameters Simultaneously from All Dimensions of Multidimensional NMR Spectra , 1998, Journal of biomolecular NMR.

[153]  R. Griffey,et al.  Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR☆ , 1983 .

[154]  David S. Wishart,et al.  Quantitative metabolomics using NMR , 2008 .

[155]  L. Frydman,et al.  Spatial encoding strategies for ultrafast multidimensional nuclear magnetic resonance. , 2008, The Journal of chemical physics.

[156]  D. G. Davis,et al.  Assignment of complex proton NMR spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy , 1985 .

[157]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[158]  Wolfram Gronwald,et al.  Urinary metabolite quantification employing 2D NMR spectroscopy. , 2008, Analytical chemistry.

[159]  L. Barantin,et al.  Concentration Measurement by Proton NMR Using the ERETIC Method. , 1999, Analytical chemistry.

[160]  D. Hollis Quantitative Analysis of Aspirin, Phenacetin, and Caffeine Mixtures by Nuclear Magnetic Resonance Spectrometry. , 1963 .

[161]  Kurt Wüthrich,et al.  Origin of τ2 and τ2 ridges in 2D NMR spectra and procedures for suppression , 1986 .

[162]  R. Brüschweiler,et al.  Covariance nuclear magnetic resonance spectroscopy. , 2004, The Journal of chemical physics.

[163]  Ghost-peak suppression in ultrafast two-dimensional NMR spectroscopy. , 2003, Journal of magnetic resonance.

[164]  H. Koskela Chapter 1 Quantitative 2D NMR Studies , 2009 .

[165]  C. Moonen,et al.  Gradient-enhanced heteronuclear correlation spectroscopy. Theory and experimental aspects , 1992 .

[166]  Robert Verpoorte,et al.  Metabolomic Differentiation of Brassica rapa Following Herbivory by Different Insect Instars using Two-Dimensional Nuclear Magnetic Resonance Spectroscopy , 2006, Journal of Chemical Ecology.

[168]  C. Barbas,et al.  Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. , 2008, Analytical biochemistry.

[169]  G. C. Levy,et al.  Maximum-Likelihood-Constrained Deconvolution of Two-Dimensional NMR Spectra. Accuracy of Spectral Quantification , 1993 .

[170]  A. Stern,et al.  Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. , 2002, Journal of the American Chemical Society.

[171]  G. Gellerstedt,et al.  Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references , 2007, Magnetic resonance in chemistry : MRC.

[172]  L. Frydman,et al.  Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products. , 2009, Journal of the American Chemical Society.

[173]  Adam D. Richardson,et al.  Central carbon metabolism in the progression of mammary carcinoma , 2007, Breast Cancer Research and Treatment.

[174]  D. van Ormondt,et al.  Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure , 1985 .

[175]  Lucio Frydman,et al.  Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications. , 2011, Journal of magnetic resonance.

[176]  K. Krishnamurthy,et al.  Compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) in multiplicity-edited HSQC. , 2003, Journal of magnetic resonance.

[177]  K. Kazimierczuk,et al.  Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. , 2007, Journal of magnetic resonance.

[178]  Mark R Viant,et al.  Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. , 2010, Phytochemical analysis : PCA.