Resilience for the Littlewood–Offord problem

Abstract Consider the sum X ( ξ ) = ∑ i = 1 n a i ξ i , where a = ( a i ) i = 1 n is a sequence of non-zero reals and ξ = ( ξ i ) i = 1 n is a sequence of i.i.d. Rademacher random variables (that is, Pr ⁡ [ ξ i = 1 ] = Pr ⁡ [ ξ i = − 1 ] = 1 / 2 ). The classical Littlewood–Offord problem asks for the best possible upper bound on the concentration probabilities Pr ⁡ [ X = x ] . In this paper we study a resilience version of the Littlewood–Offord problem: how many of the ξ i is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, and present a few interesting open problems.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  Van Vu,et al.  Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.

[3]  Raghu Meka,et al.  Anti-concentration for polynomials of Rademacher random variables and applications in complexity theory , 2015 .

[4]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[5]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[6]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[7]  Terence Tao,et al.  A sharp inverse Littlewood-Offord theorem , 2010 .

[8]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[9]  Hans Rohrbach Ein Beitrag zur additiven Zahlentheorie , 1937 .

[10]  Terence Tao,et al.  A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.

[11]  Noga Alon,et al.  The concentration of the chromatic number of random graphs , 1997, Comb..

[12]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[13]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[14]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[15]  V. Vu,et al.  Random Discrete Matrices , 2008 .

[16]  Benny Sudakov,et al.  Local resilience of graphs , 2008 .

[17]  B. Bollobás The evolution of random graphs , 1984 .

[18]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[19]  Zoltán Füredi,et al.  Sphere coverings of the hypercube with incomparable centers , 1990, Discret. Math..

[20]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.