Inhibition of bacterial ubiquitin ligases by SidJ/Calmodulin-catalyzed glutamylation

[1]  Marcin Gradowski,et al.  Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases , 2019, Science.

[2]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[3]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[4]  Jasenko Zivanov,et al.  A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis , 2018, bioRxiv.

[5]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2018, Nature Methods.

[6]  Donghyuk Shin,et al.  Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination , 2018, Nature.

[7]  Michael R Shortreed,et al.  Enhanced Global Post-translational Modification Discovery with MetaMorpheus. , 2018, Journal of proteome research.

[8]  Marie-Lena I. E. Harwardt,et al.  Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy , 2017, eLife.

[9]  Martyn Winn,et al.  Recent developments in the CCP-EM software suite , 2017, Acta crystallographica. Section D, Structural biology.

[10]  P. Piehowski,et al.  A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination , 2017, Cell Research.

[11]  I. Matic,et al.  Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination , 2016, Cell.

[12]  M. Lam,et al.  Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila , 2016, Molecular systems biology.

[13]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[14]  Zhao‐Qing Luo,et al.  Ubiquitination independent of E1 and E2 enzymes by bacterial effectors , 2016, Nature.

[15]  C. Roy,et al.  Toxicity and SidJ-Mediated Suppression of Toxicity Require Distinct Regions in the SidE Family of Legionella pneumophila Effectors , 2015, Infection and Immunity.

[16]  Kwang Cheol Jeong,et al.  Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences , 2015, Molecular microbiology.

[17]  J. Sexton,et al.  Spatiotemporal Regulation of a Legionella pneumophila T4SS Substrate by the Metaeffector SidJ , 2015, PLoS pathogens.

[18]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[19]  G. Murshudov,et al.  Conformation-independent structural comparison of macromolecules with ProSMART , 2014, Acta crystallographica. Section D, Biological crystallography.

[20]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[21]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  Craig R Roy,et al.  Modulation of host cell function by Legionella pneumophila type IV effectors. , 2010, Annual review of cell and developmental biology.

[23]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[24]  Yancheng Liu,et al.  The Legionella pneumophila Effector SidJ Is Required for Efficient Recruitment of Endoplasmic Reticulum Proteins to the Bacterial Phagosome , 2006, Infection and Immunity.

[25]  J Patrick Bardill,et al.  IcmS‐dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system , 2005, Molecular microbiology.

[26]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[27]  Hiroaki Ishida,et al.  The solution structure of apocalmodulin from Saccharomyces cerevisiae implies a mechanism for its unique Ca2+ binding property. , 2002, Biochemistry.

[28]  M. Bähler,et al.  Calmodulin signaling via the IQ motif , 2002, FEBS letters.

[29]  A. Bohm,et al.  Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin , 2002, Nature.

[30]  T. Davis,et al.  Similarities and differences between yeast and vertebrate calmodulin: an examination of the calcium-binding and structural properties of calmodulin from the yeast Saccharomyces cerevisiae. , 1993, Biochemistry.

[31]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[32]  S. Berkowitz,et al.  Calmodulin activates prokaryotic adenylate cyclase. , 1980, Proceedings of the National Academy of Sciences of the United States of America.