Can SWOT Improve the Reconstruction of Sea Level Anomaly Fields? Insights for Data-driven Approaches in the Western Mediterranean Sea

Current generation satellite altimetry missions have played a fundamental role in improving our understanding of sea surface dynamics, despite only being able to provide measurements along the satellite track. In this respect, the future SWOT altimetry mission will be the first mission to produce complete two-dimensional wide-swath satellite observations. With a view towards the upcoming SWOT mission launch, we explore the potential of SWOT observations to improve the reconstruction of high-resolution sea level anomaly (SLA) fields from satellite-derived data. Given the ever-increasing availability of multi-source datasets that supports the exploration of data-driven alternatives to classical model-driven formulations, we focus here on recently introduced data-driven models for the interpolation of geophysical fields. Using an Observing System Simulation Experiment (OSSE), we demonstrate the relevance of SWOT observations to better constraint data-driven interpolation models in order to improve the reconstruction of mesoscale features. Reported results suggest that SWOT observations can provide more information than currently available nadir along-track al-timetry observations and show an additional SLA reconstruction performance improvement when the the joint assimilation of SWOT and nadir along-track observations is considered.

[1]  Redouane Lguensat,et al.  The Analog Data Assimilation , 2017 .

[2]  Bertrand Chapron,et al.  Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System , 2015 .

[3]  Rosemary Morrow,et al.  Recent advances in observing mesoscale ocean dynamics with satellite altimetry , 2012 .

[4]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73 , 1976 .

[5]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[6]  Farid Melgani,et al.  Inpainting Strategies for Reconstruction of Missing Data in VHR Images , 2011, IEEE Geoscience and Remote Sensing Letters.

[7]  Tyrus Berry,et al.  Ensemble Kalman Filtering without a Model , 2016 .

[8]  Geir Evensen,et al.  Sequential data assimilation , 2009 .

[9]  C. J. Koblinsky,et al.  The future of spaceborne altimetry. Oceans and climate change: A long-term strategy , 1992 .

[10]  Bartolomé Garau,et al.  Vertical motion in the upper ocean from glider and altimetry data , 2009 .

[11]  Lee-Lueng Fu,et al.  Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping , 2015 .

[12]  N. B. Ingleby,et al.  The Met. Office global three‐dimensional variational data assimilation scheme , 2000 .

[13]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[14]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .

[15]  Abdeldjalil Aïssa-El-Bey,et al.  Analog Data Assimilation for Along-Track Nadir and Swot Altimetry Data in the Western Mediterranean Sea , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Yunshan Meng,et al.  An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data , 2016, PloS one.

[17]  J. Beckers,et al.  EOF Calculations and Data Filling from Incomplete Oceanographic Datasets , 2003 .

[18]  Ian T. Jolliffe,et al.  Empirical orthogonal functions and related techniques in atmospheric science: A review , 2007 .

[19]  Ronan Fablet,et al.  Missing data super-resolution using non-local and statistical priors , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[20]  Lee-Lueng Fu,et al.  Improved spatial resolution of ocean surface topography from the T/P‐Jason‐1 altimeter mission , 2003 .

[21]  Dudley B. Chelton,et al.  The Accuracies of Smoothed Sea Surface Height Fields Constructed from Tandem Satellite Altimeter Datasets , 2003 .

[22]  Patrick Pérez,et al.  Video Inpainting of Complex Scenes , 2014, SIAM J. Imaging Sci..

[23]  Gerald Dibarboure,et al.  Using High-Resolution Altimetry to Observe Mesoscale Signals , 2012 .

[24]  Bartolomé Garau,et al.  SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea , 2016 .

[25]  G. Dibarboure,et al.  An Illustration of the Contribution of the TOPEX/Poseidon—Jason-1 Tandem Mission to Mesoscale Variability Studies , 2004 .

[26]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Lee-Lueng Fu,et al.  Eddy dynamics from satellite altimetry , 2010 .

[28]  James H. Faghmous,et al.  A daily global mesoscale ocean eddy dataset from satellite altimetry , 2015, Scientific Data.

[29]  Scott Smith,et al.  Examining the Potential Impact of SWOT Observations in an Ocean Analysis-Forecasting System , 2016 .

[30]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[31]  Fabrice Hernandez,et al.  Can We Merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an Improved Description of the Ocean Circulation? , 2003 .

[32]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[33]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[34]  Ananda Pascual,et al.  Mesoscale mapping capabilities of multisatellite altimeter missions: First results with real data in the Mediterranean Sea , 2007 .

[35]  Jean-Michel Brankart,et al.  An Efficient Way to Account for Observation Error Correlations in the Assimilation of Data from the Future SWOT High-Resolution Altimeter Mission , 2016 .

[36]  A. Pascual,et al.  Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea , 2013 .

[37]  Abdeldjalil Aïssa-El-Bey,et al.  Locally-adapted convolution-based super-resolution of irregularly-sampled ocean remote sensing data , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[38]  Redouane Lguensat,et al.  Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields , 2017, IEEE Transactions on Computational Imaging.

[39]  G. Dibarboure,et al.  Use of a High-Resolution Model to Analyze the Mapping Capabilities of Multiple-Altimeter Missions , 2001 .

[40]  Bertrand Chapron,et al.  Improving Mesoscale Altimetric Data From a Multitracer Convolutional Processing of Standard Satellite-Derived Products , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Ronan Fablet,et al.  SWOT Spatial Scales in the Western Mediterranean Sea Derived from Pseudo-Observations and an Ad Hoc Filtering , 2018, Remote. Sens..

[42]  Miao Sun,et al.  Data-Driven Interpolation of Sea Level Anomalies Using Analog Data Assimilation , 2019, Remote. Sens..

[43]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[44]  Joaquín Tintoré,et al.  Mesoscale subduction at the Almeria-Oran front: Part 1: Ageostrophic flow , 2001 .

[45]  G. Dibarboure,et al.  Velocity Mapping Capabilities of Present and Future Altimeter Missions: The Role of High-Frequency Signals , 2002 .