A simplification for some disjunctive formulations
暂无分享,去创建一个
[1] Hanif D. Sherali,et al. Optimization with disjunctive constraints , 1980 .
[2] R. Meyer. Integer and mixed-integer programming models: General properties , 1975 .
[3] Fred W. Glover,et al. Polyhedral annexation in mixed integer and combinatorial programming , 1975, Math. Program..
[4] R. D. Young. Hypercylindrically Deduced Cuts in Zero-One Integer Programs , 1971, Oper. Res..
[5] J. K. Lowe. Modelling with Integer Variables. , 1984 .
[6] R. G. Jeroslow,et al. Experimental Results on the New Techniques for Integer Programming Formulations , 1985 .
[7] Toshimde Ibaraki. Integer programming formulation of combinatorial optimization problems , 1976, Discret. Math..
[8] Robert G. Jeroslow,et al. Cutting-Plane Theory: Disjunctive Methods , 1977 .
[9] R. R. Meyer. A theoretical and computational comparison of “equivalent” mixed‐integer formulations , 1981 .
[10] R. Jeroslow. Representations of unbounded optimization problems as integer programs , 1980 .
[11] E. Balas. DISJUNCTIVE PROGRAMMING: CUTTING PLANES FROM LOGICAL CONDITIONS , 1975 .
[12] R. R. Meyer,et al. Mixed integer minimization models for piecewise-linear functions of a single variable , 1976, Discret. Math..
[13] Charles E. Blair,et al. A converse for disjunctive constraints , 1978 .