A new correlation-based information diffusion prediction

For predicting the diffusion process of information, we introduce and analyze a new correlation between the information adoptions of users sharing a friend in online social networks. Based on the correlation, we propose a probabilistic model to estimate the probability of a user's adoption using the naive Bayes classifier. Next, we build a recommendation method using the probabilistic model. Finally, we demonstrate the effectiveness of the proposed method with the data from Flickr and Movielens which are well-known web services. For all cases in the experiments, the proposed method is more accurate than comparison methods.

[1]  Eric Sun,et al.  Gesundheit! Modeling Contagion through Facebook News Feed , 2009, ICWSM.

[2]  Changsheng Xu,et al.  Social influence analysis and application on multimedia sharing websites , 2013, TOMCCAP.

[3]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[4]  Ravi Kumar,et al.  Influence and correlation in social networks , 2008, KDD.

[5]  Jiawei Han,et al.  Mining topic-level influence in heterogeneous networks , 2010, CIKM.

[6]  Ee-Peng Lim,et al.  Generative Models for Item Adoptions Using Social Correlation , 2013, IEEE Transactions on Knowledge and Data Engineering.

[7]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[8]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[9]  Tomoharu Iwata,et al.  Capturing implicit user influence in online social sharing , 2010, HT '10.

[10]  Ching-Yung Lin,et al.  Personalized recommendation driven by information flow , 2006, SIGIR.

[11]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[12]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[13]  Christos Faloutsos,et al.  Rise and fall patterns of information diffusion: model and implications , 2012, KDD.

[14]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[15]  R. Cialdini Influence: Science and Practice , 1984 .

[16]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[17]  Steffen Bickel,et al.  Unsupervised prediction of citation influences , 2007, ICML '07.

[18]  Yun Chi,et al.  Information flow modeling based on diffusion rate for prediction and ranking , 2007, WWW '07.

[19]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[20]  Ramesh Nallapati,et al.  Joint latent topic models for text and citations , 2008, KDD.

[21]  R. Kraut,et al.  Varieties of Social Influence: the Role of Utility and Norms in the Success of a New Communication Medium , 1998 .

[22]  Tomoharu Iwata,et al.  Discovering latent influence in online social activities via shared cascade poisson processes , 2013, KDD.