A Survey of Methods for the Estimation Ranges of Functions Using Interval Arithmetic
暂无分享,去创建一个
[1] A. Žilinskas,et al. On Underestimating in Interval Computations , 2005 .
[2] Julius Zilinskas,et al. Balanced random interval arithmetic , 2004, Comput. Chem. Eng..
[3] Eldon Hansen,et al. A globally convergent interval method for computing and bounding real roots , 1978 .
[4] Ramon E. Moore. A Test for Existence of Solutions to Nonlinear Systems , 1977 .
[5] E. Hansen. Global optimization using interval analysis — the multi-dimensional case , 1980 .
[6] Julius Zilinskas,et al. Evaluation Ranges of Functions using Balanced Random Interval Arithmetic , 2003, Informatica.
[7] Vladik Kreinovich,et al. Interval methods that are guaranteed to underestimate (and the resulting new justification of Kaucher arithmetic) , 1996, Reliab. Comput..
[8] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[9] Antanas Zilinskas,et al. On Efficiency of Tightening Bounds in Interval Global Optimization , 2004, PARA.
[10] R. Mathar. A Hybrid Global Optimization Algorithm for Multidimensional Scaling , 1997 .
[11] William H. Press,et al. Numerical recipes in C , 2002 .
[12] S. Skelboe. Computation of rational interval functions , 1974 .
[13] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[14] Julius Zilinskas. Comparison of Packages for Interval Arithmetic , 2005, Informatica.
[15] Julius Zilinskas,et al. Estimation of Functional Ranges Using Standard and Inner Interval Arithmetic , 2006, Informatica.
[16] Otto Opitz,et al. Classification and Knowledge Organization , 1997 .
[17] D. Darling. The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .
[18] R. Alt,et al. Experiments on the evaluation of functional ranges using a random interval arithmetic , 2001 .
[19] E. Kaucher. Über Eigenschaften und Anwendungsmöglichkeiten der erweiterten Intervallrechnung und des hyperbolischen Fastkörpers über ℝ , 1977 .