FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.

Mammalian cells adapt to hypoxic conditions through a transcriptional response pathway mediated by the hypoxia-inducible factor, HIF. HIF transcriptional activity is suppressed under normoxic conditions by hydroxylation of an asparagine residue within its C-terminal transactivation domain, blocking association with coactivators. Here we show that the protein FIH-1, previously shown to interact with HIF, is an asparaginyl hydroxylase. Like known hydroxylase enzymes, FIH-1 is an Fe(II)-dependent enzyme that uses molecular O(2) to modify its substrate. Together with the recently discovered prolyl hydroxylases that regulate HIF stability, this class of oxygen-dependent enzymes comprises critical regulatory components of the hypoxic response pathway.

[1]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Geoffrey J. Barton,et al.  Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes , 1995, Nature.

[3]  L. Que,et al.  The 2-His-1-carboxylate facial triad--an emerging structural motif in mononuclear non-heme iron(II) enzymes. , 1997, European journal of biochemistry.

[4]  G. Semenza,et al.  Transactivation and Inhibitory Domains of Hypoxia-inducible Factor 1α , 1997, The Journal of Biological Chemistry.

[5]  S. McKnight,et al.  Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. , 1997, Genes & development.

[6]  M. D. Lloyd,et al.  Structure of a cephalosporin synthase , 1998, Nature.

[7]  L. Wartman,et al.  Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. , 1998, Gene expression.

[8]  J. Gorman,et al.  Characterization of pathotype-specific epitopes of newcastle disease virus fusion glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and post-source decay sequencing. , 1998, Journal of mass spectrometry : JMS.

[9]  Geoffrey J. Barton,et al.  JPred : a consensus secondary structure prediction server , 1999 .

[10]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[11]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[12]  Y. Fujii‐Kuriyama,et al.  Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal‐induced interaction with CBP/p300 , 1999, The EMBO journal.

[13]  J. Caro,et al.  Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. , 1999, Biochemical and biophysical research communications.

[14]  P. Ratcliffe,et al.  Oxygen-regulated and Transactivating Domains in Endothelial PAS Protein 1: Comparison with Hypoxia-inducible Factor-1α* , 1999, The Journal of Biological Chemistry.

[15]  Z. Derewenda,et al.  Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors. , 1999, Protein expression and purification.

[16]  Andrew L. Kung,et al.  Suppression of tumor growth through disruption of hypoxia-inducible transcription , 2000, Nature Medicine.

[17]  Christopher J. Schofield,et al.  Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase , 2000, Nature Structural Biology.

[18]  L. Poellinger,et al.  Mechanism of regulation of the hypoxia‐inducible factor‐1α by the von Hippel‐Lindau tumor suppressor protein , 2000, The EMBO journal.

[19]  Eamonn R. Maher,et al.  Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein* , 2000, The Journal of Biological Chemistry.

[20]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[21]  Eugene V Koonin,et al.  The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases , 2001, Genome Biology.

[22]  L. Poellinger,et al.  Redox-Regulated Recruitment of the Transcriptional Coactivators CREB-Binding Protein and SRC-1 to Hypoxia-Inducible Factor 1α , 2000, Molecular and Cellular Biology.

[23]  J. Gorman,et al.  Ideication of disulfide‐linked peptides by isotope profiles produced by peptic digestion of proteins in 50% 18O water , 2001, Protein science : a publication of the Protein Society.

[24]  L. Huang,et al.  Molecular mechanism of hypoxia-inducible factor 1alpha -p300 interaction. A leucine-rich interface regulated by a single cysteine. , 2001, The Journal of biological chemistry.

[25]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[26]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[27]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[28]  G. Semenza,et al.  FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. , 2001 .

[29]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[31]  K. Harlos,et al.  Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. , 2001, European journal of biochemistry.

[32]  P. Ratcliffe,et al.  Activation of the HIF pathway in cancer. , 2001, Current opinion in genetics & development.

[33]  D. Peet,et al.  Asparagine Hydroxylation of the HIF Transactivation Domain: A Hypoxic Switch , 2002, Science.

[34]  N. Sang,et al.  Carboxyl-Terminal Transactivation Activity of Hypoxia-Inducible Factor 1α Is Governed by a von Hippel-Lindau Protein-Independent, Hydroxylation-Regulated Association with p300/CBP , 2002, Molecular and Cellular Biology.