Feature selection algorithms using Chilean wine chromatograms as examples

This work presents the results of applying genetic algorithms, in selecting the more relevant features present in chromatograms of polyphenolic compounds, obtained from a high performance liquid chromatograph with aligned photodiodes detector (HPLC-DAD), of samples of Chilean red wines Cabernet Sauvignon, Carmenere and Merlot. From the 6376 points of the original chromatogram, the genetic algorithm is able to select 37 of them, providing better results, from classification point of view, than the case where the complete information is used. The percent of correct classification reached with these 37 features turned out to be 94.19%.

[1]  Washington Hilton NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE , 1983 .

[2]  P. C. KOLLER,et al.  An Introduction to Genetics , 1939, Nature.

[3]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[6]  Claude Flanzy,et al.  Enología : fundamentos científicos y tecnológicos , 2000 .

[7]  Huan Liu,et al.  Feature Selection and Classification - A Probabilistic Wrapper Approach , 1996, IEA/AIE.

[8]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[9]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[10]  Anthony N. Mucciardi,et al.  A Comparison of Seven Techniques for Choosing Subsets of Pattern Recognition Properties , 1971, IEEE Transactions on Computers.

[11]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.

[12]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[13]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[14]  Pat Langley,et al.  Oblivious Decision Trees and Abstract Cases , 1994 .

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Á. Peña-Neira,et al.  A survey of phenolic compounds in Spanish wines of different geographical origin , 2000 .

[17]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[18]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[21]  W. K. George,et al.  University of Illinois at Urbana-Champain , 1997 .

[22]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[23]  George W. Beadle,et al.  An introduction to genetics , 1940 .

[24]  Claire Cardie,et al.  Using Decision Trees to Improve Case-Based Learning , 1993, ICML.