Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics
暂无分享,去创建一个
[1] A. Nijenhuis. Combinatorial algorithms , 1975 .
[2] Michael R. Fellows,et al. What Makes Equitable Connected Partition Easy , 2009, IWPEC.
[3] Michael Lampis,et al. Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.
[4] Michael R. Fellows,et al. Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.
[5] Jan Kratochvíl. A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..
[6] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[7] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[8] Robert Ganian,et al. On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width , 2010, Discret. Appl. Math..
[9] Cristina G. Fernandes,et al. Motif Search in Graphs: Application to Metabolic Networks , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[10] Mark de Berg,et al. Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I , 2010, ESA.
[11] Ge Xia,et al. Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..
[12] Michael R. Fellows,et al. Upper and lower bounds for finding connected motifs in vertex-colored graphs , 2011, J. Comput. Syst. Sci..
[13] Geevarghese Philip,et al. On the Kernelization Complexity of Colorful Motifs , 2010, IPEC.
[14] Udi Rotics,et al. Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..
[15] Saket Saurabh,et al. Parameterized Algorithms for Boxicity , 2010, ISAAC.
[16] Robert Ganian. Thread Graphs, Linear Rank-Width and Their Algorithmic Applications , 2010, IWOCA.
[17] Michael A. Langston,et al. Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.
[18] Michael R. Fellows,et al. On the complexity of some colorful problems parameterized by treewidth , 2011, Inf. Comput..
[19] D. Berend,et al. IMPROVED BOUNDS ON BELL NUMBERS AND ON MOMENTS OF SUMS OF RANDOM VARIABLES , 2000 .
[20] Jirí Fiala,et al. Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..